Kneser neighbours and orthogonal Galois representations in dimensions 16 and 24

Gaëtan Chenevier

(joint work with Jean Lannes)

Let $n \geq 1$ be an integer. Recall that an even unimodular lattice in the standard euclidean space \mathbb{R}^n is a lattice $L \subset \mathbb{R}^n$ of covolume 1 with $x \cdot x \in 2\mathbb{Z}$ for all $x \in L$. Let X_n denote the set of isometry classes of even unimodular lattices in \mathbb{R}^n. As is well-known, X_n is a finite set which is non-empty if and only if $n \equiv 0 \mod 8$. For example, the lattice $E_n = D_n + \mathbb{Z} e_1 + \ldots + e_n$, $\{e_1, \ldots, e_n\}$ denoting the canonical basis of \mathbb{R}^n and D_n the sublattice of index 2 in \mathbb{Z}^n whose elements (x_i) satisfy $\sum_i x_i \equiv 0 \mod 2$, is even unimodular for $n \equiv 0 \mod 8$.

The set X_n has been determined in only three cases. One has $X_8 = \{E_8\}$ (Mordell), $X_{16} = \{E_8 \oplus E_8, E_{16}\}$ (Witt) and Niemeier showed that X_{24} has 24 explicit elements (see [V]). The number of numerical coincidences related to Niemeier’s lists is quite extraordinary and makes that list still mysterious. For the other values of n the Minkowski-Siegel-Smith mass formula shows that X_n is huge, perhaps impossible to describe. For instance, X_{32} already has more than 8.10^6 elements ([S]).

Let $L \subset \mathbb{R}^n$ be an even unimodular lattice, and let p be a prime; Kneser defines a p-neighbour of L as an even unimodular lattice $M \subset \mathbb{R}^n$ such that $M \cap L$ has index p in L (hence in M). The relation of being p-neighbours turns X_n into a graph which was shown to be connected by Kneser, providing a theoretical way to compute X_n from the single lattice E_n. This is actually the way Kneser and Niemeier computed X_n for $n \leq 24$, using the prime $p = 2$ and the huge number of symmetries present in those cases.

In this paper, we are interested in giving an explicit formula for the number $N_p(L, M)$ of p-neighbours of L which are isometric to M. Equivalently, it amounts to determining the \mathbb{Z}-linear operator $T_p : \mathbb{Z}[X_n] \to \mathbb{Z}[X_n]$ defined by $T_p[L] = \sum[N]$, $[-]$ denoting the isometry class of a lattice, the summation being over all the p-neighbours of L.

Before stating our main results, let us mention that the p-neighbours of a given even unimodular lattice L are in canonical bijection with the \mathbb{F}_p-points of the projective quadric C_L over \mathbb{Z} defined by the quadratic form $x \mapsto x^2$ on L. The quadric C_L is hyperbolic over \mathbb{F}_p for each prime p, thus L has exactly

$$c_n(p) = |C_L(\mathbb{F}_p)| = 1 + p + p^2 + \ldots + p^{n-2} + p^{n/2-1}$$

p-neighbours, where $n = \text{rk}_\mathbb{Z} L$. We are thus interested in the partition of the quadric $C_L(\mathbb{F}_p)$ into $|X_n|$ parts (some of them being possibly empty) given by the isometry classes. Of course, $N_p(E_8, E_8) = c_8(p)$ as $X_8 = \{E_8\}$, thus the first interesting case (perhaps known to specialists!) is $n = 16$.

1
Theorem A: Let \(n = 16 \). In the basis \(E_8 \oplus E_8, E_{16} \) the matrix of \(T_p \) is
\[
c_{16}(p) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + (1 + p + p^2 + p^3) \begin{bmatrix} 1 + p^{11} - \tau(p) \\ 691 \end{bmatrix} \begin{bmatrix} -405 & 286 \\ 405 & -286 \end{bmatrix}
\]
\[
\sum_{n \geq 1} \tau(n) q^n = q \prod_{n \geq 1} (1 - q^n)^{24} \text{ denoting Ramanujan’s } \Delta \text{ function.}
\]

One first makes two well-known observations. First, the operators \(T_p \) commute with each others. Second, they are self-adjoint for the scalar product defined by \(\langle [L], [M] \rangle = \delta_{[L],[M]} |O(L)| \), which amounts to saying that for all \(L, M \in X_n \) we have
\[
(1) \quad N_p(L, M) |O(M)| = N_p(M, L) |O(L)|.
\]
Our main question (for any \(n \)) is thus equivalent to first finding a basis of \(\mathbb{R}[X_n] \) made of eigenvectors common to all of the \(T_p \) operators, and then to describing the system of eigenvalues \((\lambda_p) \) of the \((T_p) \) on each of these eigenvectors. If \(n = 16 \) it is not difficult to compute \(T_2 \), and this was essentially done by Borcherds for \(n = 24 \) (see [N-V]). In both cases, the eigenvalues of \(T_2 \) are distinct integers (this was noticed by Nebe and Venkov [N-V] for \(n = 24 \)). Let us mention the important presence of \((c_n(p)) \) as “trivial” system of eigenvalues : formula (1) shows that \(\sum_{L \in X_n} [L] |O(L)|^{-1} \in \mathbb{Q}[X_n] \) is an eigenvector for \(T_p \) with eigenvalue \(c_n(p) \).

Assume now \(n = 16 \). The non-trivial system of eigenvalues is related to Ramanujan’s \(\Delta \)-function in a non-trivial way. Our proof relies on Siegel theta series
\[
\vartheta_g : \mathbb{Z}[X_n] \rightarrow \text{M}_2(\text{Sp}_{2g}(\mathbb{Z})),
\]
the latter space being the space of classical Siegel modular forms of weight \(n/2 \) and genus \(g \). The generalized Eichler commutation relation ([R], [W]) asserts that \(\vartheta_g \) intertwines \(T_p \) with some explicit Hecke operator on the space of Siegel modular forms. By a classical result of Witt, Kneser and Igusa (see [K]),
\[
\vartheta_g(E_8 \oplus E_8) = \vartheta_g(E_{16}) \text{ if } g \leq 3,
\]
whereas \(F = \vartheta_4(E_8 \oplus E_8) - \vartheta_4(E_{16}) \) does not vanish, thus the \(T_p \)-eigenvale we are looking for is related to the Hecke eigenvalues of \(F \in S_8(\text{Sp}_{2g}(\mathbb{Z})) \). A result by Poor and Yuen [P-Y] asserts that the latter space is 1-dimensional (generated by the famous Schottky form). But another non-trivial member of this space is Ikeda’s lift of Ramanujan’s \(\Delta \) function (see [I]), whose Hecke eigenvalues are explicitly given in terms of \(\Delta \). By unravelling the precise formulæ we obtain Theorem A. Actually, we found a direct proof of the existence of Ikeda’s lift of \(\Delta \) that relies on the triality for the reductive group \(\text{PGO}_{E_8}^+ \) over \(\mathbb{Z} \) and two theta series constructions.

Pre-Theorem B : There is an explicit formula as well for \(T_p \) if \(n = 24 \).

In this case it is more difficult to find the non trivial systems of eigenvalues on \(\mathbb{Q}[X_{24}] \). Five of them were actually identified as Ikeda lifts in the work of Nebe and Venkov [N-V], with a particular one due to Borcherds-Freitag-Weissauer. We rather rely on Chapter 9 of the book [A] by Arthur . . . which is still unpublished at
the moment; hence the * in the statement above. The relation with automorphic forms comes from the canonical identification $X_n = G(\mathbb{Q}) \backslash G(A_f) / G(\mathbb{Z})$ where G is the \mathbb{Z}-orthogonal group of E_n, so that $\mathbb{C}[X_n]$ is canonically the dual of the space of automorphic forms of G of level 1 and trivial coefficients. The quickest way (although perhaps inappropriate!) to state our results is in terms of Galois representations.

Fix a prime ℓ. Thanks to the works of many authors (including [A]), for any system of eigenvalues $\pi = (\lambda_p)$ of (T_p) on $\overline{\mathbb{Q}}[X_n]$, there exists a unique continuous, semi-simple representation

$$\rho_{\pi, \ell} : \text{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \text{GO}(n, \overline{\mathbb{Q}}_\ell)$$

which is unramified outside ℓ and such that $\text{Trace}(\rho_{\pi, \ell}(\text{Frob}_p)) = \lambda_p$ for each prime $p \neq \ell$. This Galois representation is furthermore crystalline at ℓ with Hodge-Tate numbers $0, 1, \ldots, n - 2$, the number $n/2 - 1$ occurring twice.

For example, if $\pi = (c_n(p))$ then $\rho_{\pi, \ell} = (\oplus_{i=0}^{n-2} \omega^i) \oplus \omega^{n/2 - 1}$, where ω is the ℓ-adic cyclotomic character. Moreover, Theorem A implies that if π is the non-trivial system of eigenvalues when $n = 16$, then $\rho_{\pi, \ell} = \rho_{\Delta, \ell} \otimes (\oplus_{i=0}^{8} \omega^i) \oplus (\oplus_{i=0}^{8} \omega^i) \otimes \omega^4$, where $\rho_{\Delta, \ell}$ is Deligne’s Galois representation attached to Δ.

Consider now the following collection of orthogonal ℓ-adic Galois representations of $\text{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ with similitude factor ω^{22} and distinct Hodge-Tate numbers in \{0, 2, \ldots, 22\}. For r odd and $1 \leq r \leq 23$, set

$$[r] = (\oplus_{i=0}^{-r} \omega^i) \otimes \omega^{23-r}.$$

For r even, $k \in \{12, 16, 18, 20, 22\}$, $k + r \leq 24$, set

$$\Delta_k[r] = \rho_{\Delta_k, \ell} \otimes (\oplus_{i=0}^{-r} \omega^i) \otimes \omega^{24-(k+r)},$$

where Δ_k is a generator of $S_k(\text{SL}_2(\mathbb{Z}))$. Set

$$\text{Sym}^2 \Delta = \text{Sym}^2 \rho_{\Delta, \ell}.$$

For $(j, k) \in \{(6, 8), (4, 10), (8, 8), (12, 6)\}$ then the space of vector-valued Siegel modular cusp forms of genus 2 (for $\text{Sp}_4(\mathbb{Z})$) and coefficient $\text{Sym}^2 \otimes \det^k$ has dimension one (Tsushima, see [VdG]). Let $\Delta_{j,k}$ be a generator and let $\rho_{\Delta_{j,k}, \ell}$ be its associated 4-dimensional ℓ-adic Galois representation (Weissauer); it is symplectic with Hodge-Tate numbers $0, k - 2, j + k - 1$, and $j + 2k - 3$. Set

$$\Delta_{j,k}[2] = \rho_{\Delta_{j,k}, \ell} \otimes (1 \oplus \omega) \otimes \omega^{24-2k-r}.$$

Fact: There are exactly 24 representations of dimension 24 which are direct sums of representations in the list (2)–(5) above and whose Hodge-Tate numbers are 0, 1, \ldots, 22 with 11 occurring twice.

For instance, $\text{Sym}^2 \Delta \oplus \Delta_{20}[2] \oplus \Delta_{16}[2] \oplus \Delta[2] \oplus [9], \Delta_{4,10}[2] \oplus \Delta_{18}[2] \oplus \Delta[4] \oplus [3] \oplus [1]$, and $\text{Sym}^2 \Delta \oplus \Delta_{4,8}[2] \oplus \Delta_{16}[2] \oplus \Delta[2] \oplus [5]$ are three of them. A more precise form of pre-Theorem B (still conditional to Arthur’s results) is then the following.
Theorem* B: The Galois representations attached to the 24 systems of eigenvalues π occurring in $\mathbb{Q}[X_{24}]$ are exactly the Galois representations above.

Thanks to this list, the only unknown to determine T_p on $\mathbb{Z}[X_{24}]$ are the Hecke eigenvalues of the four Siegel cusp forms $\Delta_{j,k}$. They have actually been computed by Van der Geer and Faber for all $p \leq 11$, and even for some of them up to $p = 37$; see [VdG]. We checked that their results fit with Borcherds’s computation of T_2. Better yet, we directly proved that for any even unimodular root lattice $L \subset \mathbb{R}^{24}$ with Coxeter number $h(L)$ we have

$$N_p(\text{Leech}, L) = 0 \text{ if } p < h(L).$$

In particular, if $L \in \{E_{24}, E_8 \oplus E_8, A_{24}, E_{38} \}$ and $p \leq 23$ then $N_p(\text{Leech}, L) = 0$. This simple fact allowed us to confirm all the eigenvalues given in the table of Van der Geer and Faber for $p \leq 23$ and to compute $^1 T_p$ for those p. Using the Ramanujan estimates for the Δ_k and $\Delta_{j,k}$, and with the convention $h(\text{Leech}) = 1$, we obtain for instance:

Corollary* : Assume $p \geq 11$. If L and M are two even unimodular lattices in \mathbb{R}^{24} with Coxeter numbers $h(L) \geq h(M)$, then $N_p(L, M) \geq 1$ if, and only if, $p \geq h(L)/h(M)$.

The author thanks Jean-Pierre Serre for his remarks.

References
