Kneser neighbours and orthogonal Galois representations in dimensions 16 and 24

GAËTAN CHENEVIER

(joint work with Jean Lannes)

Let $n \geq 1$ be an integer. Recall that an even unimodular lattice in the standard euclidean space \mathbb{R}^n is a lattice $L \subset \mathbb{R}^n$ of covolume 1 with $x \cdot x \in 2\mathbb{Z}$ for all $x \in L$. Let X_n denote the set of isometry classes of even unimodular lattices in \mathbb{R}^n . As is well-known, X_n is a finite set which is non-empty if and only if $n \equiv 0 \mod 8$. For example, the lattice

$$\mathbf{E}_n = \mathbf{D}_n + \mathbb{Z} \ \frac{e_1 + \ldots + e_n}{2},$$

 $\{e_1, \ldots, e_n\}$ denoting the canonical basis of \mathbb{R}^n and D_n the sublattice of index 2 in \mathbb{Z}^n whose elements (x_i) satisfy $\sum_i x_i \equiv 0 \mod 2$, is even unimodular for $n \equiv 0 \mod 8$.

The set X_n has been determined in only three cases. One has $X_8 = \{E_8\}$ (Mordell), $X_{16} = \{E_8 \oplus E_8, E_{16}\}$ (Witt) and Niemeier showed that X_{24} has 24 explicit elements (see [V]). The number of numerical coincidences related to Niemeier's lists is quite extraordinary and makes that list still mysterious. For the other values of n the Minkowski-Siegel-Smith mass formula shows that X_n is huge, perhaps impossible to describe. For instance, X_{32} already has more than 80.10^6 elements ([S]).

Let $L \subset \mathbb{R}^n$ be an even unimodular lattice, and let p be a prime; Kneser defines a p-neighbour of L as an even unimodular lattice $M \subset \mathbb{R}^n$ such that $M \cap L$ has index p in L (hence in M). The relation of being p-neighbours turns X_n into a graph which was shown to be connected by Kneser, providing a theoretical way to compute X_n from the single lattice E_n . This is actually the way Kneser and Niemeier computed X_n for $n \leq 24$, using the prime p = 2 and the huge number of symmetries present in those cases.

In this paper, we are interested in giving an explicit formula for the number $N_p(L, M)$ of *p*-neighbours of *L* which are isometric to *M*. Equivalently, it amounts to determining the \mathbb{Z} -linear operator $T_p : \mathbb{Z}[X_n] \to \mathbb{Z}[X_n]$ defined by $T_p[L] = \sum [N], [-]$ denoting the isometry class of a lattice, the summation being over all the *p*-neighbours of *L*.

Before stating our main results, let us mention that the *p*-neighbours of a given even unimodular lattice L are in canonical bijection with the \mathbb{F}_{p} -points of the projective quadric C_{L} over \mathbb{Z} defined by the quadratic form $x \mapsto \frac{x \cdot x}{2}$ on L. The quadric C_{L} is hyperbolic over \mathbb{F}_{p} for each prime p, thus L has exactly

$$c_n(p) = |C_L(\mathbb{F}_p)| = 1 + p + p^2 + \ldots + p^{n-2} + p^{n/2-1}$$

p-neighbours, where $n = \mathrm{rk}_{\mathbb{Z}}L$. We are thus interested in the partition of the quadric $C_L(\mathbb{F}_p)$ into $|X_n|$ parts (some of them being possibly empty) given by the isometry classes. Of course, $N_p(E_8, E_8) = c_8(p)$ as $X_8 = \{E_8\}$, thus the first interesting case (perhaps known to specialists!) is n = 16.

Theorem A: Let
$$n = 16$$
. In the basis $E_8 \oplus E_8$, E_{16} the matrix of T_p is
 $c_{16}(p) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + (1 + p + p^2 + p^3) \frac{1 + p^{11} - \tau(p)}{691} \begin{bmatrix} -405 & 286 \\ 405 & -286 \end{bmatrix}$,
 $\sum_{n\geq 1} \tau(n)q^n = q \prod_{n\geq 1} (1 - q^n)^{24}$ denoting Ramanujan's Δ function.

One first makes two well-known observations. First, the operators T_p commute with each others. Second, they are self-adjoint for the scalar product defined by $\langle [L], [M] \rangle = \delta_{[L], [M]} |O(L)|$, which amounts to saying that for all $L, M \in X_n$ we have

(1)
$$N_p(L,M)|O(M)| = N_p(M,L)|O(L)|.$$

Our main question (for any n) is thus equivalent to first finding a basis of $\mathbb{R}[X_n]$ made of eigenvectors common to all of the T_p operators, and then to describing the system of eigenvalues (λ_p) of the (T_p) on each of these eigenvectors. If n = 16it is not difficult to compute T_2 , and this was essentially done by Borcherds for n = 24 (see [N-V]). In both cases, the eigenvalues of T_2 are distinct integers (this was noticed by Nebe and Venkov [N-V] for n = 24). Let us mention the important presence of $(c_n(p))$ as "trivial" system of eigenvalues : formula (1) shows that $\sum_{L \in X_n} [L] |O(L)|^{-1} \in \mathbb{Q}[X_n]$ is an eigenvector for T_p with eigenvalue $c_n(p)$.

Assume now n = 16. The non-trivial system of eigenvalues is related to Ramanujan's Δ -function in a non-trivial way. Our proof relies on Siegel theta series

$$\vartheta_g : \mathbb{Z}[X_n] \to \mathrm{M}_{\frac{n}{2}}(\mathrm{Sp}_{2q}(\mathbb{Z})),$$

the latter space being the space of classical Siegel modular forms of weight n/2 and genus g. The generalized Eichler commutation relation ([R], [W]) asserts that ϑ_g intertwines T_p with some explicit Hecke operator on the space of Siegel modular forms. By a classical result of Witt, Kneser and Igusa (see [K]),

$$\vartheta_q(\mathbf{E}_8 \oplus \mathbf{E}_8) = \vartheta_q(\mathbf{E}_{16}) \text{ if } g \leq 3,$$

whereas $F = \vartheta_4(E_8 \oplus E_8) - \vartheta_4(E_{16})$ does not vanish, thus the T_p -eigenvalue we are looking for is related to the Hecke eigenvalues of $F \in S_8(Sp_8(\mathbb{Z}))$. A result by Poor and Yuen [P-Y] asserts that the latter space is 1-dimensional (generated by the famous Schottky form!). But another non-trivial member of this space is Ikeda's lift of Ramanujan's Δ function (see [I]), whose Hecke eigenvalues are explicitly given in terms of Δ . By unravelling the precise formulae we obtain Theorem A. Actually, we found a direct proof of the existence of Ikeda's lift of Δ that relies on the triality for the reductive group $PGO_{E_8}^+$ over \mathbb{Z} and two theta series constructions.

Pre-Theorem^{*} **B** : There is an explicit formula as well for T_p if n = 24.

In this case it is more difficult to find the non trivial systems of eigenvalues on $\mathbb{Q}[X_{24}]$. Five of them were actually identified as Ikeda lifts in the work of Nebe and Venkov [N-V], with a particular one due to Borcherds-Freitag-Weissauer. We rather rely on Chapter 9 of the book [A] by Arthur ... which is still unpublished at

the moment; hence the * in the statement above. The relation with automorphic forms comes from the canonical identification $X_n = G(\mathbb{Q}) \setminus G(\mathbb{A}_f)/G(\mathbb{Z})$ where G is the Z-orhogonal group of E_n , so that $\mathbb{C}[X_n]$ is canonically the dual of the space of automorphic forms of G of level 1 and trivial coefficients. The quickest way (although perhaps inappropriate!) to state our results is in terms of Galois representations.

Fix a prime ℓ . Thanks to the works of many authors (including [A]), for any system of eigenvalues $\pi = (\lambda_p)$ of (\mathbf{T}_p) on $\overline{\mathbb{Q}}_{\ell}[\mathbf{X}_n]$, there exists a unique continuous, semi-simple representation

$$p_{\pi,\ell}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GO}(n, \overline{\mathbb{Q}_\ell})$$

which is unramified outside ℓ and such that $\operatorname{Trace}(\rho_{\pi,\ell}(\operatorname{Frob}_p)) = \lambda_p$ for each prime $p \neq \ell$. This Galois representation is furthermore crystalline at ℓ with Hodge-Tate numbers $0, 1, \ldots, n-2$, the number n/2 - 1 occuring twice.

For example, if $\pi = (c_n(p))$ then $\rho_{\pi,\ell} = (\bigoplus_{i=0}^{n-2}\omega^i) \oplus \omega^{n/2-1}$, where ω is the ℓ -adic cyclotomic character. Moreover, Theorem A implies that if π is the non-trivial system of eigenvalues when n = 16, then $\rho_{\pi,\ell} = \rho_{\Delta,\ell} \otimes (\bigoplus_{i=0}^{3}\omega^i) \oplus \omega^7 \oplus (\bigoplus_{i=0}^{6}\omega^i) \otimes \omega^4$, where $\rho_{\Delta,\ell}$ is Deligne's Galois representation attached to Δ .

Consider now the following collection of orthogonal ℓ -adic Galois representations of Gal($\overline{\mathbb{Q}}/\mathbb{Q}$) with similitude factor ω^{22} and distinct Hodge-Tate numbers in $\{0, 2, \ldots, 22\}$. For r odd and $1 \leq r \leq 23$, set

(2)
$$[r] = \left(\oplus_{i=0}^{r-1} \omega^i \right) \otimes \omega^{\frac{23-r}{2}}.$$

For r even, $k \in \{12, 16, 18, 20, 22\}, k + r \le 24$, set

(3)
$$\Delta_k[r] = \rho_{\Delta_k,\ell} \otimes (\bigoplus_{i=0}^{r-1} \omega^i) \otimes \omega^{\frac{24-(k+r)}{2}},$$

where Δ_k is a generator of $S_k(SL_2(\mathbb{Z}))$. Set

(4)
$$\operatorname{Sym}^2 \Delta = \operatorname{Sym}^2 \rho_{\Delta,\ell}$$

For $(j,k) \in \{(6,8), (4,10), (8,8), (12,6)\}$ then the space of vector-valued Siegel modular cusp forms of genus 2 (for $\operatorname{Sp}_4(\mathbb{Z})$) and coefficient $\operatorname{Sym}^j \otimes \det^k$ has dimension one (Tsushima, see [VdG]). Let $\Delta_{j,k}$ be a generator and let $\rho_{\Delta_{j,k},\ell}$ be its associated 4-dimensional ℓ -adic Galois representation (Weissauer); it is symplectic with Hodge-Tate numbers 0, k - 2, j + k - 1, and j + 2k - 3. Set

(5)
$$\Delta_{j,k}[2] = \rho_{\Delta_{j,k},\ell} \otimes (1 \oplus \omega) \otimes \omega^{\frac{24-2k-j}{2}}.$$

Fact: There are exactly 24 representations of dimension 24 which are direct sums of representations in the list (2)–(5) above and whose Hodge-Tate numbers are $0, 1, \ldots, 22$ with 11 occurring twice.

For instance, $\operatorname{Sym}^2 \Delta \oplus \Delta_{20}[2] \oplus \Delta_{16}[2] \oplus \Delta[2] \oplus [9]$, $\Delta_{4,10}[2] \oplus \Delta_{18}[2] \oplus \Delta[4] \oplus [3] \oplus [1]$, and $\operatorname{Sym}^2 \Delta \oplus \Delta_{6,8}[2] \oplus \Delta_{16}[2] \oplus \Delta[2] \oplus [5]$ are three of them. A more precise form of pre-Theorem B (still conditionnal to Arthur's results) is then the following.

Theorem^{*} **B** : The Galois representations attached to the 24 systems of eigenvalues π occurring in $\mathbb{Q}[X_{24}]$ are exactly the Galois representations above.

Thanks to this list, the only unknown to determine T_p on $\mathbb{Z}[X_{24}]$ are the Hecke eigenvalues of the four Siegel cusp forms $\Delta_{j,k}$. They have actually been computed by Van der Geer and Faber for all $p \leq 11$, and even for some of them up to p = 37: see [VdG]. We checked that their results fit with Borcherds's computation of T_2 . Better yet, we directly proved that for any even unimodular root lattice $L \subset \mathbb{R}^{24}$ with Coxeter number h(L) we have

$$N_p(\text{Leech}, L) = 0$$
 if $p < h(L)$.

In particular, if $L \in \{E_{24}, E_8^3, E_8 \oplus E_{16}, A_{24}^+\}$ and $p \leq 23$ then $N_p(\text{Leech}, L) = 0$. This simple fact allowed us to confirm all the eigenvalues given in the table of Van der Geer and Faber for $p \leq 23$ and to compute¹ T_p for those p. Using the Ramanujan estimates for the Δ_k and $\Delta_{j,k}$, and with the convention h(Leech) = 1, we obtain for instance :

Corollary^{*}: Assume $p \ge 11$. If L and M are two even unimodular lattices in \mathbb{R}^{24} with Coxeter numbers $h(L) \ge h(M)$, then $N_p(L, M) \ge 1$ if, and only if, $p \ge h(L)/h(M)$.

The author thanks Jean-Pierre Serre for his remarks.

References

- [A] J. Arthur, The endoscopic classification of representations: orthogonal and symplectic groups, preprint available at http://www.claymath.org/cw/arthur/.
- [V] B. Venkov, On the classification of integral even unimodular 24-dimensional quadratic forms, in J. H. Conway & N. J. Sloane, Sphere packings, lattices and groups, 3. ed., Grundlehren der Math. Wissen. 290, Springer-Verlag, New York (1999).
- T. Ikeda, On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n, Ann. of Math. (2) 154 (2001), no. 3, 641681.
- [K] M. Kneser, Lineare Relationen zwischen Darstellungsanzahlen quadratischer Formen, Math. Ann. 168 (1967), 31–39.
- [N-V] G. Nebe, B. & Venkov, On Siegel modular forms of weight 12, J. Reine Angew. Math. 531 (2001), 49–60.
- [P-Y] C. Poor & D. S. Yuen, Dimensions of spaces of Siegel modular forms of low weight in degree four, Bull. Austral. Math. Soc. 54 (1996), no. 2, 309–315.
- [R] S. Rallis, Langlands' functoriality and the Weil representation, Amer. J. Math. 104 (1982), no. 3, 469–515.
- [S] J.-P. Serre, Cours d'arithmétique, P. U. F., Paris (1970).
- [VdG] G. van der Geer, Siegel modular forms and their applications, The 1-2-3 of modular forms, 181–245, Universitext, Springer, Berlin (2008).
- [W] L. Walling, Action of Hecke operators on Siegel theta series II, Int. J. Number Theory 4 (2008), no. 6, 9811008.

¹See http://www.math.polytechnique.fr/~chenevier/niemeier/niemeier.html for tables.