Paris, April 11th 2019.

In this note we check that the 4 Siegel modular forms F_{g} of weight 13 , with $g=8,12,16,24$, discovered in [CheTaï19] all satisfy Böcherer's criterion [Boc89]. Their standard parameters ψ_{g} are the following:
$\Delta_{21,13}[4] \oplus[1], \Delta_{19,7}[6] \oplus[1], \Delta_{17}[8] \oplus[9] \oplus[7] \oplus[1]$ and $\Delta_{11}[12] \oplus[25]$.
The weights of ψ_{g} are $\pm(13-i), 1 \leq i \leq g$, and 0 . The forms F_{g} may thus be in ν-harmonic theta correspondence with:

- O_{24} for $\nu=1$ (Archimedean component $\Lambda^{g} \mathbb{R}^{24}$) and each g,
- O_{16} for $\nu=5$ and $g=8$.

Böcherer's criterion, Theorem 5 in [Boc89], is in term of the standard L-function of F_{g}. We denote by m the rank of the orthogonal group, so $m=16$ or 24 , and by $k=m / 2+\nu$ the weight, so $k=13$ and $\nu \geq 1$. Böcherer introduces the following quantities:

$$
\begin{gathered}
\Gamma_{g}(s)=\prod_{i=0}^{g-1} \Gamma(s-i / 2) \\
\gamma_{g}^{k}(s)=\mathrm{constant} \cdot 4^{-g s} \cdot \Gamma_{g}(k+s-(g+1) / 2) / \Gamma_{g}(k+s) . \\
\omega_{g}(s)=\zeta(s) \prod_{i=1}^{g} \zeta(2 s-2 i) . \\
\mathrm{C}_{g}(s)=\prod_{i=0}^{g-1}(s+i / 2) . \\
\mathcal{C}_{g}(s, \nu)=\text { constant } \cdot \prod_{i=0}^{\nu-1} \mathrm{C}_{g}(-s-i) .
\end{gathered}
$$

Böcherer's theorem asserts that F_{g} is in the image of the ν-harmonic theta correspondence for O_{m} if, and only if, we have

$$
\left.\frac{\gamma_{g}^{k}(s) \mathcal{C}_{g}\left(\frac{m}{2}+s, \nu\right)}{\omega_{g}\left(\frac{m}{2}+2 s\right)} \mathrm{L}\left(m / 2-g+2 s, \mathrm{~F}_{g}, \mathrm{St}\right)\right|_{s=0} \neq 0
$$

We will check this holds in all of our 5 cases. For each g we write

$$
\Lambda^{A}\left(s, \mathrm{~F}_{g}, \mathrm{St}\right)=\mathrm{L}\left(s, \mathrm{~F}_{g}, \mathrm{St}\right) \Gamma^{A}\left(s, \mathrm{~F}_{g}, \mathrm{St}\right)
$$

where Γ^{A} is the Archimedean Γ-factor given by Godement-Jacquet and the expression à la Arthur of ψ_{g}. (This is neither Böcherer's nor Langlands's one, just the "obvious" one given the shape of ψ_{g} and the $\mathrm{GL}_{m^{-}}$ theory : see p. 3 below for their concrete definition).

CASE $g=8$ AND $\nu=5$.
We first consider the case $g=8, m=16, \nu=5$. We have

$$
\psi_{8}=\Delta_{21,13}[4] \oplus[1]
$$

and thus

$$
\Gamma^{A}\left(s, \mathrm{~F}_{g}, \mathrm{St}\right)=\Gamma_{\mathbb{R}}(s) \prod_{|i| \leq 3 / 2, i \text { half-integer }} \Gamma_{\mathbb{C}}\left(s+\frac{21}{2}+i\right) \Gamma_{\mathbb{C}}\left(s+\frac{13}{2}+i\right)
$$

- The order of vanishing at $m / 2-g=0$ of

$$
\Lambda^{A}\left(s, \mathrm{~F}_{g}, \mathrm{St}\right)=\xi(s) \prod_{|i| \leq 3 / 2} \Lambda\left(s+i, \Delta_{21,13}\right)
$$

(product over half integers, ξ is the complete Riemann ζ function) is thus -1 , since we have $\Lambda\left(\frac{1}{2}, \Delta_{21,13}\right) \neq 0$ (Chenevier-Lannes). The valuation of $\Gamma^{A}\left(s, \mathrm{~F}_{g}, \mathrm{St}\right)$ at $s=0$ is -1 , hence $\mathrm{L}\left(0, \mathrm{~F}_{g}, \mathrm{St}\right)$ is nonzero. - The order of vanishing of $\omega_{g}(s)$ at $m / 2=g$ is 0 (we recall $\zeta(0) \neq 0$).

- The order of vanishing of $\gamma_{g}^{k}(s)$ at $s=0$ is also 0 since we have $k-(g+1) / 2>\frac{g-1}{2}$, i.e. $k>g$, and $\Gamma_{g}(s)$ is nonzero for $s>\frac{g-1}{2}$ real.
- Moreover, $\mathcal{C}_{g}(s, \nu)$ cannot vanish for $s>\frac{g-1}{2}$ real.

We have thus proved that F_{8} is in the image of the 5 -harmonic theta correspondence for O_{16}.

Cases with $\nu=1$.

In the remaining cases we have $m=24$ and $\nu=1$.
Consider first the term

$$
\mathcal{C}_{g}(m / 2+s, \nu)=2^{g} \mathrm{C}_{g}\left(-\frac{m}{2}-s\right)=2^{g} \prod_{i=0}^{g-1}\left(\frac{i-m}{2}-s\right) .
$$

Its order of vanishing at $s=0$ is 1 for $0 \leq m \leq g-1,0$ otherwise. We have $g-1<24=m$ in all cases, hence this order is 0 in all cases.
The $\zeta(s)$ function vanishes at the order 1 at $s=-2,-4, \ldots$ and nowhere else on $2 \mathbb{Z}$. It follows that the order of vanishing of $\omega_{g}(m / 2+2 s)$ at $s=0$ is the number of integers $1 \leq i \leq g$ with $m-2 i<0$, i.e. $m / 2<i \leq g$. We obtain thus $g-m / 2$ for $g \geq m / 2$, and 0 otherwise.
Consider $\gamma_{g}^{k}(s)$ at $s=0$. As g is even, the order of vanishing of $\gamma_{g}^{k}(s)$ at $s=0$ is the sum of:

- the opposite of the number of odd integers $0 \leq i<g$ with $k-\frac{g+1}{2} \leq$ $i / 2$, i.e. with $i \geq 2 k-g-1$. This number is zero for $k>g$.
- the number of even integers $0 \leq i<g$ with $k \leq i / 2$, i.e. with $i \geq 2 k$. This is always 0 since we have $2 k>g$ in all cases.

Consider the order of vanishing at $s=m / 2-g$ of $\mathrm{L}\left(s, \mathrm{~F}_{g}, \mathrm{St}\right)$. This is boring... The order of vanishing at this point of $\Lambda^{A}\left(s, \mathrm{~F}_{g}, \mathrm{St}\right)$ is dealt with case by case.
$-(g=8)$ We have $m / 2-g=4$ and $\psi_{8}=\Delta_{21,13}[4] \oplus[1]$, so this order is 0 (note $4-\frac{3}{2}>\frac{1}{2}$).
$-(g=12)$ We have $m / 2-g=0$ and $\psi_{12}=\Delta_{19,7}[6] \oplus[1]$, so this order is -1 as we know $\Lambda\left(1 / 2, \Delta_{19,7}\right) \neq 0$ by Chenevier-Lannes.
$-(g=16)$ We have $m / 2-g=-4$ and $\psi_{16}=\Delta_{17}[8] \oplus[9] \oplus[7] \oplus[1]$. The contribution of $[1] \oplus[7] \oplus[9]$ to the order of vanishing is -1 . The contribution of $\Delta_{17}[8]$ is 0 as $-4+\frac{7}{2}<\frac{1}{2}$. All in all we get -1 .
$-(g=24)$ We have $m / 2-g=-12$ and $\psi_{24}=\Delta_{11}[12] \oplus[25]$, so this order is -1 given the shape of ψ_{24}.

Consider now the Γ factor $\Gamma^{A}\left(s, \mathrm{~F}_{g}, \mathrm{St}\right)$ at $s=m / 2-g$, case by case.
$-(g=8)$ This is $\Gamma_{\mathbb{R}}(s) \prod_{|i| \leq 3 / 2} \Gamma_{\mathbb{C}}\left(s+\frac{21}{2}+i\right) \Gamma_{\mathbb{C}}\left(s+\frac{13}{2}+i\right)$ (over halfintegers), whose order of vanishing at $s=4$ is 0 .
$-(g=12)$ This is $\Gamma_{\mathbb{R}}(s) \prod_{|i| \leq 5 / 2} \Gamma_{\mathbb{C}}\left(s+\frac{19}{2}+i\right) \Gamma_{\mathbb{C}}\left(s+\frac{7}{2}+i\right)$, whose order of vanishing at $s=0$ is -1 .
$-(g=16)$ This is $\Gamma_{\mathbb{R}}(s) \prod_{|i| \leq 3} \Gamma_{\mathbb{R}}(s+i) \prod_{|i| \leq 4} \Gamma_{\mathbb{R}}(s+i) \prod_{|i| \leq 7 / 2} \Gamma_{\mathbb{C}}(s+$ $\frac{17}{2}+i$), whose order of vanishing at $s=-4$ is $-1-3-5=-9$.
$-(g=24)$ This is $\prod_{|i| \leq 12} \Gamma_{\mathbb{R}}(s+i) \prod_{|i| \leq 11 / 2} \Gamma_{\mathbb{C}}\left(s+\frac{11}{2}+i\right)$, whose order of vanishing at $s=-12$ is $-13-12=-25$.

In the end, we have the following table:

g	\mathfrak{C}	$1 / \omega$	γ	Λ^{A}	$1 / \Gamma^{A}$	ord
8	0	0	0	0	0	0
12	0	0	0	-1	1	0
16	0	-4	-4	-1	9	0
24	0	-12	-12	-1	25	0

The order of vanishing ord (sum of the 5 other terms) is thus zero in all cases: the F_{g} are in the image of the 1-harmonic theta correspondence for O_{24}, by Böcherer's theorem.

Gaëtan Chenevier and Olivier Taïbi

[CheTaï19] G. Chenevier and O. Taïbi, Discrete series multiplicities for classical groups over \mathbb{Z} and level 1 algebraic cusp forms, preprint 2019.
[Boc89] S. Böcherer, Siegel modular forms and theta series, in Theta functionsBowdoin 1987, Part 2 (Brunswick, ME, 1987), Proc. Sympos. Pure Math. 49, p. 33-17, Amer. Math. Soc., Providence, RI, 1989.

