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Goal = discuss certain finiteness results and conjectures in algebraic
number theory and arithmetic geometry. The simplest instance of
them is a result known as the Hermite-Minkowski theorem. I will
start from it and then move to Galois representations.

1 The Hermite-Minkowski theorem

First, I want to recall what is the discriminant of a polynomial.

Fix k a field and P in k[X] monic. Write P =
∏

i(X − λi) in k[X]
and set discP =

∏
i<j(λi − λj)2. This is a universal polynomial with

coeff. in Z in the coefficients of P (with famous formulas in low degree,
however quickly ugly); this is an element of k which vanishes iff P has
a multiple root in k. Alternatively, we have discP = ±Res(P, P ′).

Assume P ∈ Z[X]. Then for any prime p we have (discP ) mod p =
disc(P mod p). In particular, the prime factors p are exactly the ones
such that P mod p has multiple root in Fp. If P is irreducible then
discP 6= 0, finitely many such p. Arguing in the p-adic numbers would
also show that p-adic valuation of discE is big if some λi are congruent
modulo big powers of p.

Several interesting properties. One famous due to Minkowski : if
P ∈ Z[X] is irreducible and discP = ±1 implies degP = 1. Interest-
ing for a number theorist, as this is a quite complicated diophantine
equation in general. For an algebraic geometer, it says that SpecZ is
simply connected !

Hermite-Minkowski Theorem : if we have a collection of irre-
ducible polynomials P ∈ Z[X] with discP bounded, then their roots
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generate a finite extension of Q in C.

A key ingredient is a lattice theoretic interpretation. Fix P ∈ Z[X]
monic irreducible of degree n, choose α ∈ C a root of P and consider
A = Z[α]. This is a subring of C isomorphic to Z[X]/(P ), hence to Zn
as an abelian group. It naturally acts on itself by multiplication, hence
we get a trace linear form Tr : A → Z. The resultant interpretation
shows that discP is the determinant of the symmetric bilinear form
(x, y) 7→ Tr(xy). It is not necessarily pos. def. but general theory, of
which Hermite is a well-known contributor, applies. This led him to
prove the theorem when degree of P is bounded in his 1857 Crelle’s
paper (using actually rather the determinant A→ Z, or "Norm").

Minkowski’s contribution is to have shown that discP bounded
implies deg P bounded. This is a beautiful application of his geometry
of numbers, still viewing A as a lattice in the real vector space A⊗R.
Using clever convex subsets he showed the lower bound :

|discP |
1
2n ≥

√
π

2

n

(n!)1/n

The RHS increases to e
√
π

2 ≈ 2.41 when n grows, and is approximately
1.25 > 1 for n = 2. This shows that |discP | grows exponentially with
n, as well as |discP | > 1 for n > 1. �

All of this applies to arbitrary "number rings" A, i.e. subrings of
C generated by finitely many algebraic integers (such an A is free of
finite rank as an abelian groups). In particular, if K is a number field
it applies to its ring of integers OK (not necessarily of the form Z[α]).
Number theorists define discK as the discriminant of the trace bilinear
form on OK . Get same inequalities with (deg P, discP ) replaced by
([K : Q], discK), and :

Classical HM theorem : that here are only finitely many number
fields with given discriminant.

Not quite the end of the story, as Minkowski’s lower bound has
then been much improved by Odlyzko (using ideas of Stark and Serre).
These improvements have been very useful for the concrete question of
classifying number fields with given degree and bounded discriminant.
Odlyzko’s method very different : it relies on the analytic property of
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the Dedekind zeta function of K. It is a Dirichlet series defined for
Re s > 1 by the absolutely convergent Euler product:

ζK(s) =
∏
P

(1− |OK/P |−s)−1

when P varies over all maximal ideals of OK (e.g. we have ζQ = ζ).
This function "contains" the rule giving the decomposition of the ratio-
nal primes in OK . Set ξK(s) = ζK(s) {π−s/2Γ(s/2)}r1 {(2π)−sΓ(s)}r2.
Hecke showed that ξK has a meromorphic continuation to C, with
s = 0, 1 as unique (simple) poles, as well as the functional equation

ξK(s) = |discK|1/2−s ξK(1− s).

A key idea is to apply the explicit formula “à la Weil” to this func-
tion (and suitable test functions). This leads miraculously, but rather
easily, to better bounds than that of Minkowski.

2 Galois representations

In order to introduce them, consider again P ∈ Z[X] monic irreducible
of degree n. For a prime p not dividing discP , we may write

P mod p = P1P2...Pg

with the Pi irreducible 6= in (Z/pZ)[X]. A very important open prob-
lem in algebraic number theory is : can we characterize the p (not di-
viding discP ) such that the associated list {deg P1, degP2, ..., degPg}
is given ? (e.g. is irreducible, or is totally split...).

Example: P = X2−d, then discP = 4d, the question is : when d
is a square mod p ? Well-known answer given by quadratic reciprocity
law : it only depends on p mod 4d (the discriminant!). Very much
open in general, although Langlands has a candidate for a reciprocity
law in terms of automorphic forms of GLn of level discP .

Frobenius found a Galois theoretic reformulation of the question.
Let K be the splitting field of P (a Galois number field). We have a
natural morphisms Gal(K/Q) → Sn induced by permutations of the
roots of P . For any p not dividing discP , and following Frobenius,
there is a natural conjugacy class Frobp ⊂ Gal(K/Q) whose cycle
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decomposition is the list of degPi. Everything reduces to the problem
of studying the map p 7→ Frobp.

Inspired by Dirichlet’s work on arithmetic progression, Artin takes
a Fourier analysis approach on the finite group Gal(K/Q). For any
representation ρ : Gal(K/Q)→ GLn(C), he defines

L(s, ρ) =
∏

p 6|discP

det(1−ρ(Frobp)p
−s)−1 ×(explicit factor for each other places).

When ρ is the permutation representation on C[Roots(P )], we actu-
ally have L(s, ρ) = ζK , but the philosophy needs all of them. Artin
defines also the conductor of ρ, an integer denoted by N(ρ), and the
conjectures the meromorphic continuation and the functionnal equa-
tion

L(s, ρ) = εN(ρ)1/2−s L(1− s, ρ∨),
and that L(s, ρ) is entire if ρ does not contain the trivial rep. Those
conjectures have been proved by Hecke and others, except this last
assertion ("Artin conjecture"). Nevertheless, the study of L(1, ρ) still
leads to the proof of the so-called Cebotarev’s theorem. Note that the
conductor is to ρ what discK is to K.

Variant of Hermite-Minkowski : given N, n ≥ 1, there are only
finitely many iso. classes of irred. rep. ρ : Gal(Q/Q) → GLn(C)
with N(ρ) = N . This actually follows from Hermite’s result, Jor-
dan theorem + some class field theory (Anderson, Blasius, Coleman,
Zettler). Assuming the Artin conjecture, Odlyzko shows that it is not
even necessary to fix n ! This is the right generalization of Minkowki’s
contribution. Proof still uses now explicit formula for L(s, ρ).

This is a very nice way of thinking about HM, but there are many
other interesting Galois representations which are not Artin. They
occur as follows. Let X ⊂ Pn be a projective smooth variety defined
over Q. For any i ≥ 0, and any prime `, consider the Betti cohomology
group

Hi(X(C),Z)⊗Q`.

Grothendieck defined a continuous linear action of Gal(Q/Q) on this
finite dim. Q`-vector space. The philosophy is that this representation
knows a lot about X (Grothendieck, Tate, Deligne...). For instance
it knows ]X(Z/pZ) for all p of good reduction of X : for any such
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p, Grothendieck has shown that the Frobenius elements at p in the
Galois group acts in a well-defined way, and the alternate sum of their
trace is ]X(Z/pZ).

An `-adic representation ρ : Gal(Q/Q)→ GLn(Q`) is said geomet-
ric it it occurs as a subquotient of such a rep., for some i and X. The
integer imay be deduced from ρ by Deligne’s purity theorem (modulus
on Frobenius eigenvalues), it is called the weight of ρ. When i = 0 we
get all Artin representations (with different coeff. fields, but it does
not matter). For i > 0, get rep. with infinite image, never Artin. In
all cases, we still have a definition of L(s, ρ) and N(ρ) “à la Artin".

Folklore Conjecture: There are only finitely many isomorphism
classes of `-adic geometric irreducible ρ of given dimension, conductor
and weight.

The reason I know to believe in this conjecture is the following :
Theorem: (Harish-Chandra) The folklore conjecture is true if we

restrict to the automorphic ρ.

The geometric representation ρ is said automorphic if we have
L(s, ρ) = L(s, π) with π automorphic representation of GLn over Q
with n = dim ρ. The generalized modularity conjecture (or general
Langlands reciprocity conjecture) asserts that all geometric ρ are mod-
ular, hence imply the folklore conjecture. What Harish-Chandra really
proves, in quite bigger generality, is that "spaces of modular forms of
fixed weight and level are finite dimensional".

I can now state my recent contribution to this subject, in Minkowski-
Odlyzko’s style.

Theorem: (Ch.) Fix N ≥ 1. There are finitely many automorphic
irreducible, geometric, `-adic ρ with conductor N and weight ≤ 23.

To prove this theorem I study the explicit formula for the Rankin-
Selberg L-function L(s, ρ ⊗ ρ∨) in the spirit of Odlyzko’s method. I
won’t explain more than this here ! At some point the following fact
plays a role : the matrix (log π − ψ( 1+|i−j|

2 ) )0≤i,j≤w is positive definite
iff w ≤ 23 (and of signature (w, 1) otherwise). Under GRH, a different
matrix shows up and I can replace 23 by 24. I don’t know if it holds
for higher w. THE END
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