
1. Affinoid algebras and Tate’s p-adic analytic spaces : a brief survey

1.1. Introduction. (rigid) p-adic analytic geometry has been discovered by
Tate after his study of elliptic curves over Qp with multiplicative reduction. This
theory is a p-adic analogue of complex analytic geometry. There is however an
important difference between the complex and p-adic theory of analytic functions
coming from the presence of too many locally constant functions on Zm

p , which are
locally analytic in any reasonable sense. A locally ringed topological space which is
locally isomorphic to (Zn

p , sheaf of locally analytic function) is called a Qp-analytic
manifold, and it is NOT a rigid analytic space in the sense of Tate. It is for instance
always totally disconnected as a topological space, which already prevents from
doing interesting geometry Tate actually has a related notion of "woobly analytic
space" (espace analytique bancal en francais) that he opposes to its "rigid analytic
space". We strongly recommend to read Tate’s inventiones paper "Rigid analytic
spaces" and to glance through Bosch-Guntzer-Remmert "Non archimedean analysis"
for more details (especially for G-topologies). For a nice introduction to this and
other approaches, we recommend Conrad’s notes on rigid analytic geometry on his
web page.

For the purposes of this course, we shall use the language of rigid analytic ge-
ometry when studying families of modular forms and when studying the generic
fiber of deformation rings (see below). The eigencurve for instance will be a rigid
analytic curve. Our aim here is to give the general ideas of Tate’s definition of a
rigid analytic space. Just as algebraic geometry is built from affine varieties and
finitely generated k-algebras, rigid geometry is built from affinoids and the so-called
affinoid algebras. The maximal spectrum Max(A) of an affinoid algebra A may then
be endowed with a G-topology ("admissible open and admissible coverings"), a spe-
cial kind of Grothendieck topology, and a sheaf of Qp-algebras for this G-topology
whose global sections coincide with A. The resulting object is called an affinoid.
A key idea of Tate is to restrict the sheaf property to collections of open subsets
that "overlap enough", such as "finite coverings by affinoid subdomains". A general
rigid analytic space is then obtained by gluing affinoids in an appropriate geometric
category.

1.2. Affinoid algebras. The Tate algebra in m variables over Qp is the subal-
gebra

Qp〈t1, . . . , tm〉 ⊂ Qp[[t1, . . . , tm]]

of functions f =
∑

α aαtα such that aα → 0 in Qp when |α| → ∞ (check that it is
stable by product!). The convergence property of such a power series exactly ensures
that it can be evaluated on Zm

p . The elements of the Tate algebra are called a rigid
analytic function on Zm

p . The Tate algebra is a domain. Despite its analytic flavour
it actually shares many properties with the polynomial algebra :

Proposition 1.3. (Tate) Qp〈t1, . . . , tm〉 is noetherian, Jacobson, factorial, reg-
ular of equidimension n, and the nullstellensatz holds : for each maximal ideal M ,
Qp〈t1, . . . , tm〉/M is a finite extension of Qp.

(An important tool in its study is the so-called Weierstrass preparation theorem.
Note that Qp〈t〉 is in particular a principal ring.)
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Definition 1.4. An affinoid algebra is a Qp-algebra isomorphic to Qp〈t1, . . . , tm〉/I
for some n and some ideal I of Qp〈t1, . . . , tm〉.

In particular, an affinoid algebra is Noetherian, Jasobson and the nullstellensatz
holds as well.

1.5. Maximal spectrum. If A is an affinoid algebra, we denote by Max(A)
its maximal spectrum, i.e. the set of maximal ideals. It is equipped with the Zariski
topology, as well as a totally discontinous topology as we could see, but none of
these two topology is really pertinent for rigid geometry.

Thanks to the nullstellensatz, any Qp-algebra homomorphism f : A → B be-
tween two affinoid algebras induces a map f : Max(B) → Max(A), so we are in a
situation similar to the old-fashioned affine algebraic geometry.

We need two other definitions. Let A be an affinoid Qp-algebra and X = Max(A).
If L/Qp is a finite extension, we denote by A(L) or by X(L) the set of Qp-algebra
homomorphisms A → L, and we set

X(Qp) =
⋃

L⊂Qp

X(L).

The natural map X(Qp) → X is surjective by the nullstellensatz, and GQp acts
transitively in each fiber of it, so we get a bijection X(Qp)/GQp = X. Knowing X
is essentially equivalent to knowing X(L) for all L.

If a ∈ A and x ∈ X, it makes sense to define |a(x)| as A/Mx is a finite extension
of Qp, thus it has a unique norm extending the one of Qp. We define |a|sup as
Supx∈X |a(x)|. It will follow from the next result that it is finite (it is even attained
: "maximum modulus principle").

1.6. Banach algebra topology. Before computing X in some examples let
us make some topology considerations. If f =

∑
α aαtα ∈ Qp〈t1, . . . , tn〉 we define

its Gauss norm |f | as supα|aα| where |.| is the usual norm on Qp say. Then |.| is a
Qp-algebra norm1, which even satisfies |fg| = |f ||g| for all f, g, and the Tate algebra
is complete for this norm : it is a Banach Qp-algebra. One can show that any
ideal of the Tate algebra is closed for this norm, so any affinoid algebra is a Banach
algebra as well once we choose a presentation as a quotient by a Tate-algebra. This
structure is even independent of the presentation as a quotient of a Tate algebra.
Indeed :

Proposition 1.7. (Tate) Any two Banach-algebra norms on an affinoid algebra
are equivalent. Furthermore, any Qp-algebra morphism between two affinoid algebras
is continuous. If A is reduced, |.|sup is a Banach Qp-algebra norm on A.

The sup-norm and the Gauss norm turn out to coincide on Qp〈t1, . . . , tm〉. Let
us mention that for an general A, the existence of multiplicative (rather than sub-
multilpicative) a subtle question (it does not always exist, even if A is a domain).

1If A is a Qp-algebra, a Qp-algebra norm is on A is an ultrametric norm |.| : A → R+ such
that |λx| = |λ||x| for λ ∈ Qp and x ∈ A and such that |xy| ≤ |x||y| for x, y ∈ A. If A is complete
for |.| we say that |.| is a Banach-algebra norm, and that A is a Banach algebra.
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Example: (Power-bounded elements) One consequence of this is that there
is a well-defined notion of power-bounded element in an affinoid algebra, i.e. the
elements a such that {an, n ∈ N} is bounded in A. By the proposition, this notion is
also preserved under Qp-algebra homomorphisms. For instance, t is power-bounded
in Qp〈t〉. It follows that an element a ∈ A is power-bounded iff there is a Qp-algebra
morphism Qp〈t〉 → A sending t to a (universal property of Tate algebras). Tate has
shown that a ∈ A is power-bounded iff |a|sup ≤ 1 (this is non-trivial).

1.8. Examples of affinoid algebras and maximal spectra. Here are some
examples.

(o) If F/Qp is a finite extension then F is an affinoid algebra. Indeed, choose
α ∈ OF such that Qp(α) = F (there is always such an element), then
the Qp-algebra morphism Qp〈t〉 → F sending t to α is surjective. More
generally, any finite dimensional Qp-algebra is an affinoid algebra (use that
it is complete for some Qp-algebra norm).

(i) (closed unit disc in m-variables) If A = Qp〈t1, . . . , tm〉 then ϕ 7→ (ϕ(ti))
induces a bijection X(L) = {(t1, . . . , tm) ∈ L, |ti| ≤ 1} = Om

L .
(ii) (general case) If A = Qp〈t1, . . . , tm〉/I then ϕ 7→ (ϕ(ti)) induces a bijection

between X(L) and the zero locus of (a system of generators of) I inside
Om

L .
(iii) (closed disc of any radius) The affinoid closed disc with radius pr, r ∈ Z,

is Qp〈prt1, . . . , p
rtm〉 (they are all isomorphic if m is fixed). We also have

discs of any radius in pQ. For instance, if A = Qp〈t, u〉/(pu− tr) and r ∈ N,
then X(L) is the set of t ∈ L such that |t| ≤ 1/p1/r.

(iv) (annuli) If A = Qp〈x, y〉/(xy − p) then X(L) is the annulus 1/p ≤ |x| ≤ 1
in L.

(v) (relative Tate algebra) If A is an affinoid algebra, we may define as well
A〈t1, . . . , tn〉 ⊂ A[[t1, . . . , tn]] as the power series whose coefficients goes to
0 in A. It is still an affinoid algebra. What are its L-points ?

(vi) (sums) The category of affinoid algebras and Qp-algebra morphisms admit
finite (amalgamated) sums. Indeed, if we have A → B and A → C then
their sum is the completed tensor product B⊗̂AC. Concretely, if B =
A〈t1, . . . , tm〉/I and C = A〈u1, . . . , tn〉/J then

B⊗̂AC = A〈t1, . . . , tm, u1, . . . , un〉/(I, J)

(it is clearly an affinoid algebra and a sum).
(vii) If A is an affinoid algebra and B is an A-algebra of finite type as A-module,

then B is an affinoid algebra (this is not obvious).

1.9. Tate’s acyclicity theorem. Following Tate, we now define a collection of
particular subsets of Max(A) usually called affinoid subdomains (and "affine subsets"
in Tate’s original paper). Let An be the category of affinoid algebras over Qp with
Qp-algebra morphisms.

Definition 1.10. (Tate) Let A be an affinoid algebra and X = Max(A). A
subset U ⊂ X is called an affinoid subdomain, if the covariant functor An → Sets,
associating to B the set {f ∈ HomAn(A, B), f(Max(B)) ⊂ U}, is representable.



4

In other words, if there exists a morphism g : A → A′ such that for any f :
A → B, f(Max(B)) ⊂ U iff f = h o g for some h : A′ → B. In this case, we set
O(U) = A′.

In particular X (and ∅) itself is an affinoid subdomain and O(X) = A. If U is
an affinoid subdomain there is a natural Qp-algebra homomorphism O(X) → O(U).

This definition unfortunately a little difficult to grasp. Nevertheless, it is not too
difficult to show that:

- if U is an affinoid subdomain as in the statement, then g|Max(A′) is injective
with image exactly U (for instance for this last property, apply the definition to the
closed points),

- being an affinoid subdomain is a transitive property (clear),

- finite intersections of affinoid subdomains are still affinoid subdomains (this
follows at once from the existence of amalgamated sums in An).

- if f : A → B is a Qp-algebra morphism then f−1 sends affinoid subdomains
of Max(A) to affinoid subdomains of Max(B). (Idem : if A → A′ represents U ⊂
Max(A) then A′⊗̂AB represents f−1(U) ⊂ Max(B).

Here is are the most important examples of affinoid subdomains. If a1, . . . , an and
b1, . . . , bm are in A, the locus of X = Max(A) defined by |ai(x)| ≥ 1 and |bj(x)| ≤ 1
for all i, j is an affinoid subdomain ("Laurent/Weierstrass domain"). One can show
that it is represented by the affinoid A-algebra

A〈ui, vj〉/(1− aiui, bj − vj).

Let f1, . . . , fr, g ∈ A having no common zeros in X (i.e. generating the ideal A)
then the subset of X = Max(A) defined by |fi(x)| ≤ |g(x)| for all i is an affinoid
subdomain as well ("rational domain"). Indeed,2 one can show that it is represented
by the affinoid A-algebra

A′ = A〈t1, . . . , tr〉/(gti − fi).

Example. For n ∈ Z, the natural map Qp〈(pn+1t)〉 → Qp〈(pnt)〉, sending pn+1t
to p.(pnt), realizes the closed disc of radius pn as an affinoid subdomain of the closed
disc of radius pn+1 (defined by |t| ≤ pn ! it is a special case of Weierstrass/Laurent
domain : Qp〈(pn+1t)〉〈u〉/(u− pnt) = Qp〈(pnt)〉 ).

Remark. In general, strict inequalities will not define affinoid subdomains.
For instance the open unit ball |t| < 1 is not an affinoid subdomain of the closed
unit disc, although the closed disc |t| ≤ 1/p and the "circle" |t| = 1 are (Laurent
domains).

Another important but difficult result is that any open affinoid is a finite union
of rational domains (Gerritzen-Grauert, the converse is not true however). The main
theorem is the following sheaf property for finite coverings by affinoid subdomains.

2Here is the argument. Let f : A → B a morphism in An such that f(Max(B)) ⊂ U =
{x, |fi(x)| ≤ |g(x)|∀i}. Note that g does not vanish on U by as (f1, . . . , fr, g) = A, so f(g) does
not vanish on Max(B) : f(g) ∈ B× by the nullstellensatz. The elements ti = f(fi)/f(g) ∈ B are
well-defined and their sup-norm is less than 1 by definition of U : they are power bounded in B.
It follows that A → B extends to A〈t1, . . . , tr〉/(gti − fi) if we send ti to ti. The other direction is
trivial. A similar argument works for Weierstrass/Laurent domains.
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Theorem 1.11. (Tate’s acyclicity theorem) For any finite covering of Max(A)
by open affinoids Ui, the natural sequence

0 → O(X) →
∏

O(Ui) →
∏

O(Ui ∩ Uj)

is exact.

Note that the requirement on the covering allows to avoid locally constant func-
tions. For instance we see that the closed unit disc is not the disjoint union of finitely
many affinoid subdomains as the Tate-algebra is a domain ! We see also that the
open unit disc is not an affinoid subdomain.

Exercise: Show that if A is an affinoid and e is an idempotent of A, then e = 0
and e = 1 are affinoid subdomains of Max(A). Show that Spec(A) is connected iff
Max(A) is not the union of two disjoint affinoid subdomains.

1.12. Affinoids and Rigid analytic spaces. We now define the "Tate topol-
ogy" or G-topology on Max(A). Strictly speaking it is *not* a topology, but rather
a special case of Grothendieck-topology.

Definition 1.13. Let A be an affinoid algebra and X = Max(A). A subset
U ⊂ X is called an admissible open if it has a set-theoretic covering by affinoid
subdomains Ui ⊂ X, such that for any f : A → B with f(Max(B)) ⊂ U , the
covering f−1(Ui) of Max(B) admits a finite subcovering (recall that each f−1(Ui) is
an affinoid subdomain).

A collection Uj of admissible open subsets of X is an admissible covering of its
set-theoretic union U if for any f : A → B with f(Max(B)) ⊂ U , the covering
f−1(Uj) of Max(B) admits a refinement which is a finite covering by open affinoids
of B. (Such a U is necessarily an admissible open)

Finite union of open affinoids are obviously admissible open subsets (but not
necessarily affinoid subdomains), but there are many more. For instance the Zariski-
open subsets of Max(A) are admissible open (by the maximum modulus principle).

Admissible open and admissible coverings turn out to form a G-topology on
Max(A). A G-topology on a set X is a collection of subsets U (the "open subsets"),
as well as for each U ∈ U a set Cov(U) ∈ P(U) of set-theoretic coverings of U by
elements of U , satisfying properties similar to the ones satisfied by the open subsets
of the usual topologies:

(T1) U is stable by finite intersections and contains ∅,
(T2) {U} ∈ Cov(U) for U ∈ U ,
(T3) if {Ui} ∈ Cov(U) and V ⊂ U then V ∈ U if and only if V ∩Ui ∈ U for all i,
(T4) if {Ui} ∈ Cov(U) and {Vi,j}j∈J(i) ∈ Cov(Ui) then {Vi,j} ∈ Cov(U).

There is then an obvious notion of sheaf for such a topology, and by a locally ringed
G-space we shall mean a triple (X, T ,O) where X is a set, T is a G-topology on X,
and O is a sheaf of Qp-algebra on T whose stalks at any x ∈ X are local rings3. It
is then more or less formal to deduce from Tate’s acyclicity theorem that

3The stalk of O at x, often denoted by Ox, is the inductive limit of the O(U) over all the open
subsets U ∈ U containing x (this is a directed set as open subsets are stable by finite intersections).



6

Definition-Proposition 1.14. Admissible opens and admissible covering form
a G-topology on Max(A). U 7→ O(U), for U ⊂ X an affinoid subdomain, extends
uniquely to a sheaf of Qp-algebra on Max(A) for this G-topology above. The obtained
locally ringed G-space is the affinoid Sp(A).

Note that if (X, T ,O) is any locally ringed G-space and U is an open subset of
X, then we obtain by restriction a structure of locally ringed G-space (U, T|U ,O|U)
(keep only the open subsets of U). Locally ringed G-space form also a category in
an obvious way.

Definition 1.15. A rigid analytic space is a locally ringed G-space (X, T ,O)
admitting a covering {Ui} ∈ Cov(X) such that for each i, (Ui, T|Ui

,O|Ui
) is isomor-

phic to an affinoid. A morphism X → Y between two rigid analytic spaces is a
morphism between the associated locally ringed G-spaces.

Just as for schemes one shows that the functor A 7→ Sp(A) is fully-faithful from
An to the category Rig of rigid analytic spaces.

A way to construct rigid anaytic space is to glue a collection of affinoids Xi

along admissible opens Xi,j. We omit the rather obvious details here (see BGR). For
instance, if we have a collection of affinoids Xn, n ≥ 1, and morphisms Xn → Xn+1

such that Xn is an affinoid subdomain of Xn+1 for each n, then there is a unique
rigid analytic space X which is the admissible increasing union of the Xn. In the
next lectures, most of the non-affinoid rigid analytic spaces that we shall encounter
will be actually be of this type. For such a space O(X) is the projective limit of the
O(Xn) for n ≥ 1 (apply the sheaf property to the covering {Xn, n ≥ 1}).

Examples (i) The rigid analytic affine space An is the admissible increasing
union of the closed balls of radius pn for all n ≥ 0.

(ii) The open unit ball is the admissible increasing union of the closed balls of
radius 1/p1/n, for all n ≥ 1.

(iii) The rigid analytic Gm is the admissible increasing union of annuli 1/pn ≤
|t| ≤ pn for all n ≥ 1.

See BGR for other standard and useful considerations : closed immersions, fi-
nite morphisms, coherent sheaves, proper morphisms ... To really go beyond the
definitions and prove serious theorems in rigid analytic geometry one often needs to
use other approaches to rigid analytic geometry, like Raynaud’s approach via formal
geometry or Berkovich’s theory.

2. The p-adic (pseudo)-character variety of a profinite group

Let G be a profinite group, n an integer and p a prime. We assume that (*G)
holds and that p > n (this condition might be relaxed, see my paper "The p-adic
analytic space of pseudo-characters of a profinite group", but we shall be content
here with that case).

Define a covariant functor E : An → Sets as follows : for an affinoid Qp-algebra
A, E(A) is the set of continuous pseudo-characters TA : G → A of dimension n, and
if TA ∈ E(A) and f ∈ HomAn(A, B) then E(f)(TA) = T ⊗A B as usual.
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A very related functor is the functor D : An → Sets associating to A the
isomorphism classes of continuous representations ρA : G → GLn(A). The rule
ρA 7→ trace(ρA) induces a morphism D → E.

Theorem 2.1. E is representable by a rigid analytic space X over Qp.

We call X the p-adic character variety of G in dimension n. The statement means
that HomRig(Sp(A), X) = E(A) (functorially in A), which determines X uniquely
(just as a scheme is uniquely determined by its points in affine schemes).

This theorem can be precised as follows. If TA ∈ E(A), for all x ∈ X = Max(A)
we denote by Tx = T ⊗A k(x) (where k(x) is the residue field of A at x, a finite
extension of Qp). In particular Tx is the trace of a unique continuous semi-simple
representation ρx : G → GLn(k(x)), and it is good to think of TA as family of
representations indexed by Max(A) which is analytic in the sense that trace(ρx(g))
is an analytic function of x (i.e. belong to A) for all g ∈ G.

We can go a bit further. By compactness of G, Tx(G) necessarily falls inside
Ok(x) (prove it!), and in particular we can reduce it and get some T x : G → kx

where kx is the residue field of Ok(x). We say that T is residually constant and equal
to some fixed pseudo-character T : G → Fp if for all x ∈ X, T x ⊗kx Fp = T for some
embedding kx → Fp. We define ET as the subfunctor of E parametrising the TA

which are residually constant and equal to T (we leave it as an exercise to check
that it is indeed a subfunctor). As T is the trace of a unique semi-simple ρ̄ we also
denote ET by Eρ̄ without confusion.

If A is an affinoid and ρA : G → GLn(A) is a continuous representation, we
can define as above ρx and ρ̄x for all x ∈ X ("evaluation at x and semi-simplified
reduction of the evaluation"), as well as Dρ̄ ⊂ D the subfunctor parametrising the
ρA such that ρ̄x ⊗kx Fp ' ρ̄ for some fixed semi-simple ρ̄ : G → GLn(Fp) and some
embedding kx → Fp. The morphism D → E induces Dρ̄ → Eρ̄.

Theorem 2.2. (i) For any continuous semi-simple ρ̄ : G → GLn(Fp), Eρ̄

is representable by a rigid-analytic space X(ρ̄) over Qp.
(ii) The space X is an admissible disjoint union of the X(ρ̄) over all the possible

ρ̄ (up to isomorphism and Frobenius action on image).
(iii) X(ρ̄) is isomorphic4 to Berthelot’s generic fiber of R(T ) where T = trace(ρ̄).
(iv) When ρ̄ is irreducible then the natural morphism Dρ̄ → Eρ̄ is an isomor-

phism (hence X(ρ̄) represents Dρ̄).

We now sketch a proof of these theorems (we will recall Berthelot’s construction
in due time).

An affine model, or simply a model here, of an affinoid A is a Zp-subalgebra
A ⊂ A of the form Zp〈t1, . . . , tm〉 (obvious definition) where each ti ∈ A is power
bounded and such that A[1/p] = A. Such models always exist, as we see by chosing
a surjective morphism Qp〈t1, . . . , tm〉 → A. When A is reduced there is a biggest
one : the subring of power-bounded elements (it is non-trivial that this is actually
a model, but true). Otherwise, there is no canonical one. For instance for Qp[ε] the
models have the form Zp ⊕ λεZp for any λ ∈ Q×

p . If A is a model of A, then pnA is
open in A for all n ≥ 0 and A is complete for the p-adic topology.

4This requires some precision as T is Fp-valued see below.
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Lemma 2.3. Let A be a topological ring and T : G → A a continuous pseudo-
character of dimension n (so n! ∈ A×).

(i) If A is an affinoid then T (g) is power-bounded for any g ∈ G and there is
a model A ⊂ A such that T (G) ⊂ A,

(ii) If A = limnA/pnA with A/pnA discrete for each n, then the closure of
Z[T (G)] in A is a semi-local profinite ring,

(iii) If A is discrete then Z[T (G)] is a finitely generated Z-module.
(iv) If A is affinoid again, and if Spec(A) is connected, then TA is residually

constant: TA ∈ ET (A) for some T . Moreover, if k = Fp[T (G)] (a finite
field), O = W (k) and if T is viewed as a k-valued pseudo-character, there
is a unique continuous Zp-algebra homomorphism R(T ) → A such that T
factors through the universal pseudo-character G → R(T ).

Proof — Let us prove this lemma. We first check (iii). As G is compact, A discrete
and T continuous, T factors through a finite quotient of G. Indeed, for each g ∈ G
there is a normal open subgroup Hg ⊂ G such that T (gh) = T (g) for all h ∈ Hg. If
G = ∪n

i=1giHgi
then H = ∩iHgi

is a normal open subgroup such that T (gh) = T (g)
for all h ∈ H, and T factors through G/H. As a consequence, we may assume
that G is a finite group. In particular, Z[T (G)] is of finite type as Z-algebra and
we may assume that A is of finite type as Z-algebra. Such an A is finite over Z iff
for any minimal prime ideal P ⊂ A then K = Frac(A/P ) has finite degree over its
prime subfield. Fix such a P and consider T ⊗A K. It is the trace of a semi-simple
representation ρ : G → GLn(K) and as G is finite the eigenvalues of each ρ(g) are
|G|-th roots of unity so each T (g) is algebraic over the prime subfield of K. As the
field K is generated by T (G) we are done.

To check part (ii), we apply part (i) to T ⊗A A/pnA for each n. If Bn denotes
the image of B = Z[T (G)] in A/pnA, then (i) shows that Bn is finite for each n.
Moreover, if B̂ is the closure of the statement then B̂ = projlimnBn by definition
: it is a profinite ring. The radical of B̂ contains the open ideal pA ∩ B̂ as A and
B̂ are complete, so B̂ is semi-local as B1 = B̂/(pA ∩ B̂) is (it is a finite ring) : this
proves (ii).

Let us check (i). In any affinoid algebra, an element is power bounded if and
only if its image in k(x) is in Ok(x) for all x ∈ Sp(A) (this is not trivial but true)
in which case we have already said that Tx(G) ⊂ Ok(x), hence the first part of (i).
For the second part, pick first any model A ⊂ A and consider the compact subset
T (G) ⊂ A. As A is open, there are finitely many elements g1, . . . , gs ∈ G such that

T (G) ⊂
⋃

(T (gi) +A).

As T (gi) is power-bounded for each i, A′ = A〈T (g1), . . . , T (gs)〉 is a model of A and
we are done.

Let us check (iv) finally. Denote by T̃ : G → B̂ the factorisation of TA by
B̂ ⊂ A. As A is connected, the ring B̂ is local. If k is the residue field of B̂ we
set T = T̃ ⊗ bB k. If x ∈ X we have a natural map B̂ → k(x) that necessarily
falls inside Ok(x). It follows that the residue field k of B̂ maps to kx and that the
residual pseudo-character T x comes by a scalar extension from T̃ . Note that by
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Hensel lemma, there is a unique morphism O → B̂ that induces the identify on the
residue fields. The universal property of R(T ) concludes the proof. �

We now go back to the proofs of theorems 2.1 and 2.2. By (iv) of lemma 2.3,
theorem 2.1 and (ii) of 2.2 are consequences of part (i) of Thm. 2.2. Let us check
the first part of (iv) of that Theorem. We only have to show that if TA ∈ ET (A) and
if T = trace(ρ̄) where ρ̄ is irreducible5, then there is a unique representation G →
GLn(A) whose trace is TA (up to GLn(A)-conjugation). The existence follows from
part (iv) of the Lemma above: if ρu : G → GLn(R(ρ̄)) is the universal representation,
then ρu ⊗R(ρ̄) A has the required property by that lemma. The uniqueness actually
follows from the fact that we have an isomorphism at the level of Cayley-Hamilton
quotients

A[G]/CH(T ) = (R(T )[G]/CH(T ))⊗R(T ) A ' Mn(A)

by the precision we gave in the theorem of Nyssen-Rouquier-Procesi, so that the
uniqueness follows again from the fact that any A-algebra endomorphism of Mn(A)
is the conjugation by some matrix in GLn(A).

We know prove (i) and (iii) of Thm. 2.2. We need for this to recall a construction
due to Berthelot (see the appendix §7 to DeJong "Crystalline Dieudonné module
theory via formal and Rigid geometry"). This construction starts with some local
complete noetherian Zp-algebra R say with (finite) residue field k, and maximal
ideal called m and produce some rigid space XR. If you choose a presentation

O[[X1, . . . , Xr]]/J = R

this space will simply be the subspace of the open unit ball in r-variables over Qq

(viewed by restriction over Qp) defined by the vanishing of the elements of J . In
particular, it will simply be the open unit ball when R is formally smooth over O.
Here is a canonical (and useful) way to define it abstracly.

Proposition 2.4. For any R as above, the functor An → Sets associating to
an affinoid algebra A the continuous ring homomorphisms R → A is representable
by a rigid analytic space XR.

Explicitely, this space is an admissible increasing union of the affinoids XR,n =
Sp(Rn[1/p]), n ≥ 1, where Rn is the p-adic completion of R[mn/p]. The space XR,n

is an affinoid subdomain of XR,n+1.

Note that this proposition concludes the proof of Theorem 2.2.

Proof — (see also De Jong Lemma 7.1.2 of loc. cit., Prop. 7.1.7). Note that
up to replacing R by its biggest p-torsion free quotient (which does not change the
functor), we might assume that R has no p-torsion if we like (this is not necessary
however). There are three things to check :

(a) Rn[1/p] is an affinoid algebra. For this it is enough to check that R[mn/p]/(p)
is finitely generated over k. But this follows at once from the inclusion

mnR[mn/p] ⊂ pR[mn/p].

5Note that ρ̄ is defined over the field k by a well-known result of Schur (no obstruction to
define an absolutely irreducible rep. over its field of trace if p > n, this comes in turn from the
fact that all finite fields are commutative).
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(b) If f : R → A is a continuous homomorphism to a Qp-affinoid A and if
x1, . . . , xr ∈ R is a system of R-generators of m, then the f(xi) are topo-
logically nilpotent in A. If A is any model of A then f(mn) ⊂ pA for
n big enough, so that f extends to a homomorphism R[mn/p] → A (for
all n big enough). As A is p-adically complete, this induces a morphism
Rn → A, hence Rn[1/p] → A for all n big enough. It follows from this
analysis and from (a) that Rn[1/p] represents the functor An → Sets of
continuous homomorphisms f : R → A such that each element of f(mn)/p
is power-bounded.

(c) The transition maps are affinoid subdomains. If x1, . . . , xs are some R-
generators of mn then it follows from the universal property of Rn[1/p]

above that the natural map Rn+1[1/p]〈X1, . . . , Xs〉(pXi − xi)
∼→ Rn[1/p] is

an isomorphism.

�

Example : When R = Zp[[T ]] then XR is the open unit ball over Qp of dimension
1. Indeed, for any affinoid A then HomAn(Rn[1/p], A) is exactly the set of elements
t ∈ A such that tn/p is power-bounded, so Rn[1/p] = Qp〈 tn

p
〉[U ]/(tn − Un) is the

affinoid disc |t| ≤ 1/p1/n, and XR,n ⊂ XR,n+1 is the obvious inclusion. It follows that
XR is simply the open unit disc |t| < 1 over Qp. From this we deduce at once that if

R = O[[T1, . . . , Tm]]/J

then XR is the locus J = 0 in the open unit disc in m-variables |ti| < 1 over O[1/p]
(viewed by restriction over Qp).

Corollary 2.5. If ρ̄ is absolutely irreducible and R(ρ̄) ' O[[T1, . . . , Tm]] then
X(ρ̄) is the open unit ball |ti| < 1 of dimension m over Qq.

If X is a rigid analytic space over Qp we denote by X(Qp) the union of the X(L)

for all the finite extensions L of Qp inside Qp.

Proposition 2.6. (i) X(Qp) is in canonical bijection with the set of iso-
morphism classes of semi-simple representation G → GLn(Qp).

(ii ) The subset Xirr ⊂ X parametrising the absolutely irreducible representa-
tions is an admissible (Zariski-open) subset.

(iii) Moreover, if x ∈ X and if the associated semi-simple representation ρx is
irreducible and defined over L ⊃ k(x), then OX,x ⊗k(x) L represents the
deformation functor of ρx to the local complete noetherian L-algebras with
residue field L.

Indeed, (i) follows from the fact that X represents E and the first theorem on
pseudo-characters that we had in lecture 3. In part (ii), the locus in question is the
complement of the closed subset defined by the vanishing of the determinants of all
the matrices of the form (T (gigj)) where g1, . . . , gn2 are any n2 elements of G (this
follows from Wedderburn theorem). We could actually show that Xirr has a nice
moduli property : it is the same to give an A-point of X irr and an isomorphism class
of continuous surjective representation A[G] → B where B is an Azumaya algebra
of rank n2 over A. Part (iii) follows from E = Hom(X,−) applied to the artinian
objects of An.


