
1. Digression : characters and pseudo-characters (bis)

If T : G → A is a pseudo-character of dimension n and f : A → B is a ring
homomorphism, then we define T ⊗A B : G→ B as f o T . It is clearly a B-valued
pseudo-character of dimension n.

Theorem 1.1. Let A be a henselian (e.g. complete) local ring with residue field k
and let T : G→ A be a pseudo-character. Assume T⊗Ak is the trace of an absolutely
irreducible representation ρ̄ : G → GLn(k). Then there is a unique (up to isom.)
representation ρ : G→ GLn(A) whose trace is T . Actually, A[G]/CH(T) ' Mn(A).
If A ∈ C, then T is continuous if and only if ρ is continuous.

This result is due independently to Nyssen, Rouquier and Procesi (for the unique-
ness, we also find in the litterature an argument by Carayol and Serre). If A ∈ C let
us precise that we say that T is continuous if it is as a map.

We now prove the Theorem for n = 2. Denote again by T the A-linear extension
of T to A[G] and view ρ̄ as a surjective A-algebra homomorphism A[G] → Mn(k)
which is surjective by assumption. As T ⊗A k = trace(ρ̄) and as trace : Mn(k) →
k is Cayley-Hamilton, we have the following inclusion of two-sided ideal of A[G]:
CH(T) ⊂ Kerρ̄. In particular, if R = A[G]/CH(T) then we have a surjective A-
algebra homomorphism

R→ R/J 'M2(k)

that “commutes with trace mod mA” and the left-hand side is Cayley-Hamilton.
Pick x ∈ R mapping to a non-trivial idempotent e ∈M2(k). The ring A[x] ⊂ R is a
finite A-algebra by the Cayley-Hamilton identity and we have a surjective A-algebra
homomorphism

A[x] → k[e] ' k × k

so the idempotent e lifts as an idempotent e ∈ A[x] ⊂ R by the henselian property
(or by Hensel lemma if A is complete).1

We also may pick x ∈ eR(1− e) and y ∈ (1− e)Re such that T (xy) ∈ A× : lift
anyhow generators the elementary matrices E1,2 and E2,1 in M2(k). The last lemma
of the previous lecture ensures then that R 'M2(A) as an A-algebra. We conclude
the existence of ρ using the tautological morphism G→ R× ' GLn(A).

For the uniqueness, remark that if ρ′ : A[G] → Mn(A) is a representation with
trace T , then ρ′(CH(T)) = 0 so it induces an A-algebra homomorphism

A[G]/CH(T) −→ Mn(A),

but any A-algebra homomorphism Mn(A) → Mn(A) is automatically an isomor-
phism, and induced by the conjugation by some P ∈ GLn(A) (check this as an
exercise).

If ρ is continuous then so is T , when A ∈ C. If T is continuous, as ρ(A[G]) =
Mn(A) we may find finitely many elements gi ∈ G, i ∈ I, such that the ρ(gi) generate

1We can argue here as follows : if Q = X2 − T (x)X + (T (x)2 − T (x2))/2 ∈ A[X] is the
"characteristic polynomial of x", then Q mod mA = X2 − X ∈ k[X] by assumption. As X and
X − 1 are coprime in k[X], Hensel lemma ensures that Q = (X − a)(X − b) ∈ A[T ] for some
unique a, b ∈ A, with a ∈ mA and b ≡ 1 mod mA. Then e := (x − a)/(b − a) ∈ A[X] lifts e and
1− e = (b− x)/(b− a), so e2 = e.

1
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Mn(A) as A-module. The linear map

Mn(A) → AI

x 7→ (T (xgi)) is injective, hence a homeomorphism onto its image (a property of
finite type modules over complete local noetherian rings). If T is continuous, then
so are the maps g 7→ T (g±1gi), and so is ρ by the previous assertion. �

2. Pseudo-deformations and representability

Let G be a profinite group, k = O/pO as in the first section of lecture 3, n! ∈ k×
(that is p > n) and let

T : G→ k

be a continuous pseudo-character of dimension n. Define the pseudo-deformation
functor of T as the functor

FT : C → Sets

where FT (A) is the set of continuous pseudo-characters TA : G→ A of dimension n
such that TA ⊗A k = T via the augmentation map A→ k. Of course, if A→ B is a
morphism in C and TA ∈ FT (A), we set FT (TA) = TA ⊗A B.

Theorem 2.1. (i) There is a unique local pro-artinian ring R(T ) with residue
field k such that FT ' FR(T ).

(ii) If T = trace(ρ̄) where ρ̄ : G→ GLn(k) is absolutely irreducible, then ρA 7→
trace(ρA) induces an isomorphism Fρ̄ ' FT .

(iii) If (∗G) holds then R(T ) is noetherian and FT is representable.

The combination of (i), (ii) and (iii) concludes the proof of Mazur’s theorem
when p > n.

Proof — Consider the abstract O-algebra

R0 = O[{Tg, g ∈ G}]/J
where J is the ideal generated by the relations T1 − n, Tgh − Thg for all g, h ∈ G, as
well as the abstract pseudo-character relation : for instance when n = 2 we add the
relations

Tgg′g′′ + Tgg′′g′ − TgTg′g′′ − Tg′Tgg′′ − Tg′′Tgg′ + TgTg′Tg′′

for all g, g′, g′′ in G. By definition, the map

T : G→ R0, g 7→ Tg,

is a R0-valued pseudo-character of dimension n which is universal in the following
sense: for any O-algebra A and any pseudo-character TA : G → A of dimension n,
there is a unique ring O-algebra homomorphism R0 → A such that T ⊗R0 A = TA.
Indeed, all we have to do is to send Tg ∈ R0 to TA(g) ∈ A.

In particular, T defines a surjective O-algebra morphism R0 → k and we shall
denote by m its kernel (a maximal ideal). Let I be the set of ideals I ⊂ m of R0 such
that R0/I is artinian and such that the pseudocharacter T ⊗R0 R0/I is continuous.
Note that I is stable by finite intersections (why?). Define R as the completion of
R0 with respect to I:

R(T ) = projlimI∈IR0/I.
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It is a pro-artinian local ring.2 Unravelling the definitions, it is obvious that
(R(T ), T ⊗R0 R(T )) represents FT : C → Sets. This proves (i).

Part (ii) is a reformulation of Theorem 1.1 of Nyssen-Rouquier-Procesi.

We shall only prove (iii) when T is the trace of an absolutely irreducible repre-
sentation G→ GLn(k). In this case,

Fρ̄ ' F ′
ρ̄ ' FT

hence the tangent spaces of these three functors coincide and are finite dimensional
over k, as the one of F ′

ρ̄ is as we have seen in lecture 3. It follows that R(T ) is
actually noetherian by a Prop. of lecture 3 as well, hence that the three functors
above are actually representable.

�

The following corollary is useful in the applications to Galois representations, and
follows at once from the construction above and from the equality R(T ) = R(ρ̄):

Corollary 2.2. (Under the assumptions of Mazur’s theorem) Let t : G → O
be the Teichmuller lift of the function trace(ρ̄) : G → k. The O-algebra R(ρ̄) is
topologically generated by the elements trace(ρu(g))− t(g), for g ∈ G.

Remarks. Assume (*G), n = 2 and p > 2.

(i) If T = χ1 + χ2 for two distinct continuous characters χi : G → k×. One
can show that there is an exact sequence

0 → H1(G, k)2 → FT (k[ε]) → H1(G,χ1/χ2)⊗k H
1(G,χ2/χ1).

(see my book with Bellaiche chapter 1, as well as Bellaiche’s paper "Pseu-
dodeformations".)

(ii) T = 2χ for χ : G→ k× a continuous character, one can show that there is
an exact sequence

0 → H1(G, k)⊕ Sym2(H1(G, k)) → FT (k[ε]) → Λ3(H1(G, k)).

(ask me if you want to know the proof of this.)

Remark. Thanks to some work of Vaccarino and others, it is actually possi-
ble to modify the definition of a pseudocharacter in such a way that the assumption
n! ∈ k× is not necessary anymore : see my paper "The p-adic analytic space of pseu-
docharacters of a profinite group, and pseudorepresentations over arbitrary rings".

3. Formally smooth deformation functors

A covariant functor F : C → Sets is said formally smooth (over O) if for each
object A ∈ C and any ideal I ⊂ A such that mAI = 0, the natural map

F (A) → F (A/I)

is surjective.
2If for any I ∈ I we denote by I ′ ⊂ R(T ) the kernel of R(T ) → R0/I, then (I ∩ J)′ = I ′ ∩ J ′

and the natural map
R(T ) → projlimI∈IR(T )/I ′

is injective with dense image, hence an isomophism as the left-hand side is compact.
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Proposition 3.1. Let R ∈ C. Then FR is formally smooth if and only if R '
O[[X1, . . . , Xn]] (necessarily, n = dimk FR(k[ε])).

Proof — If R is a power series ring as in the statement, then ϕ 7→ (ϕ(Xi))i induces
a bijection

HomC(R,A) → An

for all A ∈ C, thus FR is trivially formally smooth (the surjectivity property even
holds for any I ⊂ mA). Conversely, let x1, . . . , xn ∈ mR wose image in mR/m

2
R form

a k-basis. Consider S := O[[X1, . . . , Xn]] and the natural morphism in C sending Xi

on xi :

ϕ : S → R.

This morphism is surjective (by an argument actually already explained) and we
want to show that its kernel J vanishes. Consider the tautological exact sequence

0 → J/mSJ → S/mSJ → R = S/J → 0.

Applying the formal smoothness of FR (note that mS kills J/mSJ) we may lift the
identity map of R to a morphism R → S/mSJ , so that the above sequence admits
a section. It follows that

S/mSJ = R⊕ J/mSJ

hence that mS/m
2
S = mR/m

2
R ⊕ J/mSJ . As mR/m

2
R and mS/m

2
S both have di-

mension n over k by construction, it follows that J/mSJ = 0 hence that J = 0 by
Nakayama’s lemma. �

We now investigate when Mazur’s functor F ′
ρ̄ is fomally smooth.

Proposition 3.2. (Unobstructed deformation functor) If H2(G, ad(ρ̄)) = 0 then
F ′

ρ̄ is formally smooth.

Proof — Let A → A/I a morphism in C with mAI = 0. Consider the exact
sequence of profinite groups

1 →Mn(I) → GLn(A) → GLn(A/I) → 1.

The theory of (profinite) group extensions with abelian kernel associates to the
extension above a continuous cohomology class

c ∈ H2(GLn(A/I),Mn(I)).

If ρ : G → GLn(A/I) is a continous morphism, the same theory says that we may
lift ρ to a continuous group homomorphism in GLn(A) if and only if the restricted
class

c|G ∈ H2(G,Mn(I))

defined by ρ : G → GLn(A/I), vanishes. But the k-representation Mn(I) of G is
ad(ρ̄)⊗k I (trivial action on I), whose H2 vanishes by assumption. �
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An immediate corollary of these two propositions is the following:

Corollary 3.3. Under the assumptions of Mazur’s theorem, if H2(G, ad(ρ̄)) =
0 then R(ρ̄) ' O[[X1, . . . , Xm]] where m = dimk H

1(G, ad(ρ̄)).

In this case, the situation is especially pleasant, as we have a nice continuous
ρu : G→ GLn(O[[X1, . . . , Xm]]).

The homomorphisms R(ρ̄) → O, which parametrises via ρu the isomorphism classes
of lifts of ρ̄ to O, are in bijection with (pO)n via Xi 7→ xi ∈ pO. In other words,
"the open unit disc in On parametrises the set of O-lifts of ρ̄".

4. Galois cohomology of number fields

As we have seen, the most basic properties of Mazur’s deformation functors are
governed by some cohomology groups. In order to make some computations in the
case G = GF,S for number fields, we need to recall the important results regarding
the computation of Galois cohomology of number fields. Let F be a number field
and let S ⊂ S(F ) be a finite set.

Proposition 4.1. GF,S satisfies (*G) for any prime p.

Proof — Indeed, let H be an open subgroup of GF,S. Then H = GF ′,S′ where F ′

is a finite extension of F in F S and S ′ is the set of all the places of F ′ above some
place of S. The results then follows from Hermite’s theorem recalled in lecture 1. �

Fix a prime p and let k be a finite field of characteristic p. Assume that S
contains all the primes of F above p and ∞. Let ρ be a Galois representation of
GF,S on a finite dimensional k-vector space V . Recall that V ∨ = Homk(V, k) denotes
the dual representation and V (1) is the twist of V by the cyclotomic character mod
p of GF,S.

For i ≥ 0, recall the continuous cohomology groups
H i(GF,S, V )

(Recall that continuous cohomology is defined following Tate as the cohomology of
the complex of continuous cochains in V ). These spaces are finite dimensional and
vanish for i > 2 if p > 2 or if F is totally complex : it is clear for H0, it follows
from the inflation-restriction exact sequence and (*G) for i = 1 and we admit it for
i > 1. For each place v ∈ S(F ) we have a natural k-linear map

resv : H i(GF,S, V ) → H i(GFv , V )

defined by restricting cochains by means of one of the morphims GFv → GF,S (to
see that the map on cohomology "does not depend" on the chosen GFv → G apply
Prop. VII.3 of Serre "Corps locaux" ). It is customary to set

Xi
S(GF,S, V ) = Ker H i(GF,S, V )

(resv)v∈S−→
∏
v∈S

H i(GFv , V ).

For W a finite GFv -module, we also set H̃0(Fv,W ) = H0(Fv,W ) if Fv 6= R and
H̃0(GR,W ) = W c=1/(1 + c)W otherwise, where c is the generator of GR. We take
the following result as a black box.
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Theorem 4.2. (Poitou-Tate theorems)

(i) (Euler characteristic formula)

2∑
i=0

(−1)i dimk H
i(GF,S, V ) = −(|SC|+ |SR|) dimk(V ) +

∑
v∈SR

dimk H
0(GFv , V ).

(ii) (Hasse’s principle) There is a natural exact sequence

0 −→ X2
S(GF,S , V )

can−→ H2(GF,S , V )
(resv)−→

Y
v∈S

H2(GFv , V ) =
Y
v∈S

eH0(GFv , V ∨(1))∨

(res∨v )
−→ H0(GF,S , V ∨(1))∨ −→ 0

where equality in the middle is the local duality theorem of Tate.
(iii) (Poitou-Tate duality) There is a canonical perfect pairing

X1(GF,S, V
∨(1))×X2(GF,S, V ) → k.

These theorems are due to Tate and Poitou. For proofs, which are difficult, see
for instance Neukirch, Schmidt, Wingberg "Cohomology of number fields" Ch. 8 or
Milne "Arithmetic Duality theorems" Ch. I.

A quick look at these formulas shows that they are not enough to compute
H1(GF,S, V ) and H2(GF,S, V ) in general. They rather give dimk H

1 − dimk H
2 and

reduce the computation of dimk H
2 to that of dimk X1

S(GF,S, V
∨(1)). This latter

space is difficult to control in practice, however it frequently vanishes.

Proposition 4.3. Let F ′/F be the number field cut-out by V . If the ideal class
group of OF ′ has order prime to p and if H1(Gal(F ′/F ), V ) = 0, then

X1
S(GF,S, V ) = 0.

Proof — If V is a trivial GF,S-module, then F ′ = F and

H1(GF,S, V ) = Hom(GF,S, V )

(continuous group homomorphisms to the vector space V ) so X1
S(GF,S, V ) is the

space of homomorphisms GF,S → V that vanish on the image of GFv → Gab
F,S for each

v ∈ S. By global class-field theory (see the description of Gab
F,S in lecture 1), such

a homomorphism factors through the quotient Cl(OF ) of Gab
F,S (and even through

the quotient of Cl(OF ) by the subgroup generated by the prime ideals in Sf ). The
proposition follows in this case. In general, the inflation restriction sequence writes

0 → H1(Gal(F ′/F ), V ) → H1(GF,S, V ) → H1(GF ′,S′ , V ),

where S ′ is the set of places of F ′ above some place in S. Under vanishing of the
left-hand side, it follows that the restriction induces an injection

0 → X1
S(GF,S, V ) → X1

S′(GF ′,S′ , V )

and we are reduced to the previous case. �
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5. Deformation theory of regular Galois representations.

We assume from now on that F = Q to fix ideas. Fix

ρ̄ : GQ,S → GLn(Fq)

an absolutely irreducible Galois representation. We still assume that S contains
∞, p and we assume as well that p is odd. In particular, the conjugacy class of
complex conjugations c ∈ GQ has the form

ρ̄(c) ∼ (1, . . . , 1,−1, . . . ,−1)

with i(c) = dim Ker(ρ(c)− id) times the eigenvalue 1 (hence n− i(c) times −1).

Recall the associated representation ad(ρ̄) by conjugation on Mn(Fq). We say
that ρ̄ is regular, or S-regular to emphasize the S, if H2(GQ,S, ad(ρ̄)) = 0. (These
are not standard terminologies.)

Proposition 5.1. If ρ̄ is regular then R(ρ̄) ' Zq[[X1, . . . , Xr]] where r = 1 +
2i(c)(n− i(c)).

In this case, ρ̄(c) is a scalar if and only if R(ρ̄) ' Zq[[T ]]. Moreover, if n = 2
and ρ̄ is odd then R(ρ̄) ' Zq[[X,Y, Z]].

Proof — Indeed, dim ad(ρ̄) = n2. Moreover, ad(ρ̄(c)) is diagonalisable with
i(c)2 + (n − i(c))2 times the eigenvalue 1, so that the right-hand side of the Euler-
characteristic formula is −2i(c)(n− i(c)). As

H0(GQ,S, ad(ρ̄)) ⊂Mn(Fq)

is the centralizer of ρ̄, hence the scalar matrices as ρ̄ is absolutely irreducible, it has
dimension 1, and we are done. �

When ρ̄ is not assumed regular, the structure of R(ρ̄) is presumably extremely
complicated in general, and essentially unknown. By argument similar to the ones
explained in this lecture, Mazur has shown that the Krull-dimension of R(ρ̄)/(p) is
always at least 1 + 2i(c)(n− i(c))

Open problem : Is is true that, in all cases, R(ρ̄)/(p) has dimension 1 +
2i(c)(n− i(c)) ?

When n = 1, we have ad(ρ̄) = Fq (trivial representation), so H1(GQ,S,Fq) is
the space of continuous homomorphisms Gab

Q,S → Fq. By the Euler characteristic
formula applied to V = Fq, ρ̄ is regular if and only if this space has dimension 1.
By the Kronecker-Weber theorem,

Gab
Q,S '

∏
`∈S

Z×
`

so ρ̄ is regular if and only if ` 6≡ 1 mod p for all finite prime ` in S (this is independent
of ρ̄). In this case, we have R(ρ̄) ' Zq[[T ]].

Remark 5.2. Actually, we have not explained it but it is easy to describe R(ρ̄)
directly for any one-dimensional ρ̄ : G → k×, for any group G satisfying (*G) :
it is simply the completed group ring O[[∆]] where ∆ is the maximal abelian and
pro-p-quotient of G, the universal character being the natural map G → O[[∆]]×.
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Under the assumption on G, ∆ ' Zr
p ×∆′ for some finite abelian p-group ∆′, and

it is well-known that (Iwasawa)

O[[∆] ' O[[T1, . . . , Tr]][∆
′].

In particular, O[[∆]] ∈ C and it is formally smooth over O iff ∆ is torsion free. To
check the claim above, note that twisting by the inverse of a Teichmüller lift G→ Z×

q

of ρ̄, we have R(ρ̄) ' R(1) so that we may assume ρ̄ = 1. The result follows then
easily as 1 +mA is an abelian pro-p-group for any A ∈ C.

When ρ̄(c) is a scalar matrix and ρ̄ is regular and even, we get a universal
deformation ring isomorphic to Zq[[T ]]. Actually, it is easy to check that if we fix
some lift ρ0 : GQ,S → GLn(O) of ρ̄ (which exists by the assumed formal smoothness
property of Fρ̄, i.e. by the regularity of ρ̄) then the universal deformation ring R(ρ̄)
"essentially" coincides with the twist of ρ0 by the universal character deforming 1
(this is stricly true if n is prime to p). It follows that this case is not very interesting
! The first really interesting case is thus n = 2 and ρ̄ odd.

6. Some explicit examples of odd regular ρ̄ of dimension 2

We will actually look for an example of odd regular ρ̄ on the p-torsion points
of an elliptic curve over Q. Fix E/Q such an elliptic curve and let ρ̄ be the Galois
representation on E[p] where E[p] = E(Q)[p] ' F2

p (so k = Fp from now on). As we
know, we have det(ρ̄) = Fp(1), so that det(ρ̄(c)) = −1 and ρ̄ is indeed odd.

As ρ̄ has dimension 2, then ρ̄∨ ' ρ̄⊗ det(ρ̄)−1 (because it is so for the represen-
tation of GL2(k) over k2) and we have a decomposition

ad(ρ̄) = ρ̄⊗ ρ̄∨ ' Fq ⊕ V, V = Sym2(ρ̄)⊗ det(ρ̄)−1 = Sym2E[p](−1).

We have already seen above that the vanishing of H2(GQ,S,Fq) is equivalent to the
fact that S does not contain any prime ` ≡ 1 mod p. We shall therefore concen-
trate on the other term H2(GQ,S, Sym2E[p](−1)). The following criterion is a direct
consequence of the theorems of Poitou and Tate part (ii) and (iii) :

Lemma 6.1. For any finite Fp[GQ,S]-module V , H2(GQ,S, V ) = 0 is equivalent to
the following two properties:

(R1) H0(GQ,S, V
∨(1)) →

∏
v∈S H

0(GQv , V
∨(1)) is an isomorphism.

(R2) X1
S(GQ,S, V

∨(1)) = 0.

In our case,
V ∨(1) = (Sym2(ρ̄)⊗ det(ρ̄)−1)∨(1) = Sym2E[p].

Note that (R1) is a local (usually easier) check whereas (R2) is a global (usually
much harder) problem, essentially the "vanishing of a piece of the class group of the
number field cut out by V ∨(1)" as shown by proposition 4.3. Below we denote for
short E[p] for E(F )[p] if E is an elliptic curve over F .

Lemma 6.2. Assume that E is an elliptic curve over Q` with split multiplicative
reduction, and say ` 6= p. Assume p 6= 2, `2 6≡ 1 mod p and that v`(j(E)) is prime
to p. Then H0(GQ`

, Sym2E[p]) = 0.
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Proof — Indeed, as v`(j(E)) is prime to p, Tate’s theorem recalled in lecture 2
ensures that there is a non split exact sequence of Fp[GQ`

]-modules
0 → Fp(1) → E[p] → Fp → 0.

As p > 2, it follows that Sym2E[p] has a unique GQ`
-stable line, on which it acts by

Fp(2), so frob` acts by `2 6= 1 on this line. �

Actually, if E has non-split multiplicative reduction, the same criterion holds as
E[p] contains as unique GQ`

-stable line Fp(1) twisted by the unramified character
sending ` to −1, whose square is still Fp(2). The criterion also holds when ` = p if
p > 3 (exercise).

Lemma 6.3. Assume that E is an elliptic curve over Qp with good reduction,
p > 2, and let a = p+1−|E(Fp)|. If a 6≡ 0,±1 mod p then H0(GQp , Sym2E[p]) = 0.

Proof — As a is prime to p, E has good ordinary reduction and as we have recalled
in lecture 2 in this case there is an exact sequence of Fp[GQp ]-modules:

0 → ψ−1(1) → E[p] → ψ → 0

where ψ : GQp → F×p is the unramified character sending frobQp to a mod p. The
semi-simplification of Sym2E[p] is then ψ−2(2)⊕Fp(1)⊕ψ2 and none of these three
characters is trivial by assumption on a. �

Actually, if E has good reduction and a ≡ 0 mod p (supersingular reduction),
then H0(GQp , Sym2E[p]) = 0 as well. Moreover, even if a ≡ ±1 mod p but if E[p] is
not split (which occurs most probably in practice), then Fp(2) is the unique stable
line in Sym2E[p] hence non-trivial as long as Fp(2) 6= Fp, i.e. p > 3.

These two simple facts will be enough to check (R1) in the explicit example con-
sidered below. As already said, it is actually much more difficult to check condition
(R2), namely the vanishing of X1

S(GQ,S, Sym2E[p]), essentially because there is a
part of mystery in this cohomology group (it is a special case of the "Tamagawa
number conjecture"). We shall assume from now on that ρ̄ is surjective, so that
the number field Q(ρ̄) that it cuts out is a Galois extension of Q with Galois group
' GL2(Fp).

Lemma 6.4. If p > 3 and if the class group of Q(ρ̄) has order prime to p, then
(R2) holds.

Proof — Indeed, H1(GL2(Fp), Sym2(F2
p)) = 0 as the center F×p of GL2(Fp) has

order prime to p and acts via the non-trivial character λid 7→ λ2 (p > 3). �

This naive criterion is however not reasonable to check with a computer as
|GL2(Fp)| is too big even for p = 3. Another simple, slightly more reasonable,
criterion is the following. Let B ⊂ GL2(Fp) be the subgroup of upper-triangular
matrices and let χ : B → F×p be the character of B occuring as a quotient of the
natural representation over F2

p. Let F = Q(ρ)B and F ⊂ F ′ ⊂ Q(ρ̄) the extension
of F cut out by the character χ2 of B. If p > 2, note that [F ′ : Q] = (p2 − 1)/2.

Lemma 6.5. If p > 3 and if the class group of F ′ has order prime to p, then
(R2) holds.
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Proof — By Frobenius reciprocity we have a non-zero Fp[GL2(Fp)]-morphism

Sym2(F2
p) → Ind

GL2(Fp)
B χ2.

This morphism is injective as p > 2 (so the left hand-side is irreducible) and its
cokernel does not contain the trivial representation of GL2(Fp) as p > 3 (we leave
this as an exercise to the reader. The cokernel is actually isomorphic to a twist of
Symp−3(F2

p) and is irreducible). As ρ̄ is surjective, the cohomology exact sequence
gives an injection

0 → H1(GQ,S, Sym2(E[p])) → H1(GQ,S, IndQ
Fχ

2) = H1(GF,S, χ
2)

(use Shapiro’s lemma, here and below we still denote by S the set of places of F or
F ′ dividing a place of S). Inflation-restriction gives as well an injection (as [F ′ : F ]
is prime to p)

H1(GF,S, χ
2) → H1(GF ′,S,Fp).

If we follow these two injections, we obtain an injection

X1
S(GQ,S, Sym2E[p]) → X1

S(GF ′,S,Fp)

and the last group vanishes by assumption on Cl(OF ′) by Prop. 4.3. �

There should be an explicit formula taking an elliptic curve say over Q and
giving equations for the field F ′ (or for the extension of F cut out by Ker(χ)),
however I have not been able to find such a routine on Pari GP (http://pari.
math.u-bordeaux.fr/ or on Sage (http://www.sagemath.org/). It would be nice
to implement one.

We can however circumvent this problem by first computing the field K ⊂ Q(ρ̄)
which is fixed by the subgroup H of matrices in GL2(Fp) of the form(

±1 ∗
0 ∗

)
Indeed, as the abscissa of a non-zero P ∈ E(Q) uniquely determines ±P , the field
K is generated by the abscissa of a nonzero point of p-torsion, that is a splitting
field of the x-coordinate of the p-th division polynomial of the elliptic curve E (use
e.g. the elldivpol routine by Cremona). By Galois theory the field F ′ (just as K)
is a subfield of degree (p2 − 1)/2 of K(cos(2π/p)) and it would not be difficult to
characterize it. This gives a way to find F ′ explicitely, and then to compute its class
number. In practice, Pari can for instance compute such a class number for p = 5
(the extension F ′ has degree 12). Already for p = 7, Pari will compute it in general
only assuming GRH ! We shall actually apply this below when p = 5 in which case
there are just 3 subfields of degree 12 in K(cos(2π/5)) : K, F ′ and another one with
the specific property that it contains Q(cos(2π/5)) = Q(

√
5). This gives a way to

find F ′ explicitly, and then to compute its class number.

Example: Let E be the elliptic curve y2 + xy + y = x3 − x2 − x. This curve
have discriminant 17 and j(E) = 33.113

17
. It has thus good reduction outside 17 and

multiplicative reduction at 17, actually split : if Y = y + x/2 + 1/2 and X = x− 2,
then Y 2 = X2(X + 1) modulo 17. The reduction mod 2 has 4 = 3 − (−1) points
in F2 and X2 +X + 2 is irreducible mod 5. We take p = 5 and S = {∞, 5, 17}. It
follows that ρ̄ is surjective by an argument similar to the one explained in lecture 2.
Let us check (R1):
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(i) At ∞ it is automatic as p 6= 2 (recall the convention on H0(GR,−)).
(ii) At 17 this follows from lemma 6.2 as 172 = −1 mod 5.
(iii) The reduction mod 5 of E has 7 = 5− (−2) points in F5, so that a = −2 6≡

0,±1 mod 5 and we conclude by lemma 6.3.

To check (R2) we compute first the 5-division polynomial (in abscissa), which is

5x12−15x11−22x10+125x9−240x8+240x7−45x6−123x5+100x4−30x3+10x2−5x+1

This allows to compute the field F ′ as explained above and we find that F ′ = Q(z)
where

z12−2z11−11z10 +30z9 +10z8−49z7−37z6 +49z5 +10z4−30z3−11z2 +2z+1 = 0.

Pari tells us that the class group of this number field is actually trivial, and we are
done ! As an exercise, the reader can check by the same argument that the 5-torsion
of the elliptic curve y2 + y = x3 + x2 + x (so ∆ = −19) is regular as well. �

As we have seen, it is rather painful to check a condition like (R2), although
it is likely to be satisfied rather often as the method above may suggest. This is
reminescent to the fact that a positive density of primes should be regular in the sense
of Kummer. However, the sufficient class number condition described above is by no
mean necessary as we mostly forgot the Galois structure of class group of Q(ρ̄) and
the part related to (R2), that is the Sym2E[p]-isotypic component of Cl(Q(ρ̄))/(p),
may vanish even if the class group itself does not modulo p. The following result
of Flach (A finiteness theorem for the symmetric square of an elliptic curve, Invent.
Math. 109 (1992), pp. 307–327.) actually beautifully solves the problem in a
completely different way:

Theorem 6.6. (Flach) Let E be an elliptic curve over Q, p > 3 a prime of
good reduction and S the set of primes above p∞ or of bad reduction of E. If ρ̄
surjective and p does not divide the degree of a modular parametrisation of E then
X1

S(GQ,S, Sym2E[p]) = 0.

A modular parametrisation of E is a finite morphism X0(N) → E. That such
a morphism always exists is a consequence of Taniyama-Shimura-Weil + Falting’s
isogeny theorem. For instance, the curve X0(17) is already an elliptic curve (hence
has trivially modular degree 1). It is isogenous to the curve y2 +xy+y = x3−x2−x
treated above. As ρ̄ is surjective mod 5 in this case such an isogeny has order prime
to 5 and we are done ! (Actually it can be shown that the only non-trivial isogenies
of this curve have degree a power of 2). In general, the result of Flach (combined
with a result of Serre and the modularity results above) shows that if E has no CM
then for all but finitely many p we have X1

S(GQ,S, Sym2E[p]) = 0. It is not difficult
to check how (R1) varies with p, and one can actually shows that :

Theorem 6.7. (Mazur) If E is a non-CM elliptic curve, then for a subset of
primes p with Dirichlet density one the Galois representation on E[p] is regular.

See Mazur’s paper An infinite fern in the deformation space of Galois represen-
tations Corollary 2. The result of Flach has been generalized to any modular Galois
representations by Diamond-Flach-Guo, which allowed Weston to give a variant of
Mazur’s result for all the modular Galois representations (see his paper "Unob-
structed modular deformation problems", there is also related work by Yamagami).
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For instance, Weston shows that if ∆ is Ramanujan ’s cuspform of weight 12 and
level 1, then ρ̄∆,p is unobstructed for all prime p > 13 and p 6= 691.


