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Remark 2.4. Let E be an elliptic curve over a finite extension F of Q`. When
` = p or when E has bad reduction, the Galois representation Vp(E) is more com-
plicated, in particular it is ramified, but essentially completely known. We describe
below some results without proofs (see Silverman’s book).

(i) If ` = p and E has good reduction, an extension of the arguments of Prop. ??
would show that there is a GF -equivariant exact sequence

0 → Tp(E0(F̂ )) → Tp(E(F )) → Tp(E(kF )) → 0.

The latter Tate-module has actually Zp-rank 1 or 0, in which case we say
that E is ordinary or supersingular respectively. On can show that the first
case occurs if and only if the integer

a := |kF |+ 1− |E(kF )|

is prime to p. In this case, the eigenvalue of frobkF
on Tp(E(kF )) is the

(unique) root of X2 − aX + |kF | that belongs to Z×
p . In the supersingular

case, E(F )[p] is an (absolutely) irreducible Fp[GF ]-module and Vp(E) will
be described more precisely in the lectures of Berger. In all cases, Vp(E) is
a crystalline representation of GF , whose Fontaine functor Dcris is known
explicitely.

(ii) We say that E has split multiplicative reduction if E has an integral Weier-
strass equation whose reduction E, the plane curve over kF obtained by
reducing that equation modulo πF , has a unique singular point which is
furthermore a double point whose two tangents are defined over kF . In this
case a theorem of Tate ensures that there exists a unique qE ∈ F× and a
Z[GF ]-equivariant isomorphism

E(F )
∼→ F

×
/qZ

E.

The “Tate-period” qE has the property that v(qE) = −v(j(E)) > 0. This
describes explicitely Tp(E) in terms of qE in this case, for all prime p. In
particular, there is an exact sequence of Zp[GF ]-modules

0 → Zp(1) → Tp(E) → Zp → 0,

which is non-split even after inverting p, and even mod p if qE is not a
p-th power in F×. In particular, Tp(E) is tamely ramified if ` 6= p (i.e.
ρE,p(PF ) = {1}). This result of Tate is especially important as for any E,
there exists a finite extension F ′/F such that E ×F F ′ has either good or
split multiplicative reduction.
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Let us give an application of all of this to the computation of ρE,p in some
example. Recall the two following elementary results from group theory:

(a)(Dickson) If a subgroup G ⊂ GL2(Fp) has its order divisible by p and if G acts
irreducibly on F2

p (for instance, contains an element with irreducible characteristic
polynomial), then G ⊃ SL2(Fp).

(b) (Serre) If G is a closed subgroup of GL2(Zp) whose image in GL2(Fp) contains
SL2(Fp), and if p ≥ 5, then G ⊃ SL2(Zp).

Dickson’s result follows from the fact that the transvections in SL2(Fp) are
the elements of order p, and that any two non-proportional transvections gener-
ate SL2(Fp). For a proof of Serre’s result, see Serre “Abelian `-adic representations".

Example 2.5. Consider the elliptic curve E : y2 + y = x3 − x2 over Q. Then
ρE,p : GQ → GL2(Zp) is surjective if p ≡ 3 mod 4 and p ≥ 7.

Proof — Indeed, det ρE,p is the p-adic cyclotomic character, hence surjective, so by
(b) it is enough to show that the reduction mod p of ρE,p satisfies the assumptions
of (a) above.

Note first that ∆ = 11 so E has good reduction outside 11. Moreover, |E(F2)| =
5 = 1 + 2 − (−2), so det(1 − TρE,p(frob2)) = 1 + 2T + 2T 2. For p ≡ 3 mod 4, this
polynomial is irreducible over Fp as its discriminant −4 is not a square in Fp.

Moreover, E has split multiplicative reduction at 11. Indeed, modulo 11 we
have x3 − x2 + 1/4 ≡ (x + 3)2(x + 4) mod 11, so E mod 11 is Y 2 = X2(X + 1) up
to changing Weierstrass coordinates, and the tangents at (0, 1) are Y = ±X. As
j(E) = −212/11, the Tate-period of E×Q11 is a uniformizer, hence it is never a p-th
power in Q11, so ρE,p(IQ11) mod p is cyclic of order p for each p by Tate’s theorem,
and we are done. �

Not that this funishes examples of Galois extensions of Q whose Galois group is
GL2(Z/pnZ) for each n ≥ 1, in particular non solvable, whenever p = 3k + 4 ≥ 7.

Actually, a lot is know about the image of ρE,p for a general elliptic curve over Q.
Let us simply say that if E has no CM, a theorem of Serre ensures that this image is
always open, and equals the whole of GL2(Zp) for almost all prime p. Actually, for
the curve E of the proposition, this occurs for all p 6= 5. For p = 5, there are exactly
three homothety classes of GQ-stable lattices in V5(E), the reduction mod 5 of T5(E)
being non-split. The two other elliptic curves over Q which are isogenous to E, and
corresponding to these lattices, are the curves y2 +y = x3−x2−7820x−263580 and
y2+y = x3−x2−10x−20 (this last one having a split 5-torsion). See Serre’s paper :
Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math.
15 (1972), no. 4, 259–331.

References : As an elementary and useful reference for this paragraph, see Sil-
verman’s book “The arithmetic of ellictic curves”. See also Serre "Abelian `-adic
representations", and Katz-Mazur "Arithmetic moduli of elliptic curves". For tables
of elliptic curves, see the home page of John Cremona : http://www.warwick.ac.
uk/staff/J.E.Cremona/ftp/data/INDEX.html (the notation for an elliptic curve
is usually [a1, a2, a3, a4, a6] as in (??)), Pari GP is often useful as well.
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2.6. Tate modules of Jacobians and general geometric Galois repre-
sentations. The construction of the Tate-module of an elliptic curve directly gen-
eralizes, following Weil, to any abelian variety over F , in which case its dimension
is twice the dimension of the abelian variety if p ∈ F ∗ : see for instance Mumford’s
book on abelian varieties for the study of the multiplication by N on an abelian va-
riety. Each algebraic curve has an natural associated abelian variety, its Jacobian,
whose Tate-module can actually be defined from scratch as follows.

Let C be a projective smooth algebraic curve over F , and assume that C×F F is
connected. The geometric Weil divisor group Div(C) is the free abelian group over
the set C(F ). It has a natural degree linear map deg : Div(C) → Z sending a point
to 1, the kernel of which is denoted by Div0(C). There is a natural group homo-
morphism div : F (C)× → Div0(C) associating to any rational function f ∈ F (C)×

its divisor div(f) counting its poles and zeros with their multiplicities. Consider the
abelian group

Pic0(C)(F ) = Div0(C)/div(F (C)×).

Note that the action of GF on C(F ) gives Div(C) a structure of discrete GF -module,
that preserves Div0(C) and div(F (C)×), hence Pic0(C)(F ) is a discrete GF -module
as well. If E is an elliptic curve, then the map E(F ) → Pic0(E)(F ), P 7→ [P ]−[O], is
a Z[GF ]-module homomorphism essentially by definition of the group law on E(F ).
As a consequence this map is surjective, and it is actually even bijective (Abel’s
theorem) as a relation [P ]− [O] = div(f) would imply that f : E ×F F

∼→ P1
F
.

Theorem 2.7. (Weil) Let A = Pic0(C)(F ). For N ∈ F×, then |A[N ]| = N2g

where g is the genus of the curve C ×F F . In particular Tp(A) ' Z2g
p , if p ∈ F ∗.

Let us set Tp(C) := Tp(Pic0(C)(F )), this definition is coherent with the previous
one for elliptic curves by the remarks above. The properties of these more general
Tate-modules are actually quite similar to the ones we have seen for elliptic curves.

All these constructions of Galois representations are actually special cases of
a much more general construction defined by Grothendieck called étale cohomol-
ogy, which makes sense for any scheme of finite type over F and even more (see
Grothendieck’s SGA 4 or Milne’s étale cohomology). If X is such a scheme, and if
we set XF ′ = X×F F ′ if F → F ′ is a field embedding, he defined for p ∈ F× a finite
type Zp-module

H i
et(XF , Zp) = proj lim

m
H i

et(XF , Z/pmZ)

which has a natural continuous Zp-linear action of GF . We also write H i
et(XF , Qp) =

H i
et(XF , Zp)[1/p]. These cohomology groups vanish for i /∈ {0, . . . , 2d}, where d =

dim(X).

Examples:

(i) When X = Gm = A1\{0}, then H1
et(XF , Zp) = Zp(−1) is the Zp-dual of

Tp(F
×
).
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(ii) When X = E is an elliptic curve over F (or more generally an abelian
variety over F ), then Tp(E) is also naturally isomorphic1 to the Zp-dual of
H1

et(EF , Zp).
(iii) When C = X is a projective smooth algebraic curve over F , the Kummer

exact sequence gives a canonical isomorphism H1
et(CF , Zp)

∼→ Tp(C)(−1).
Still in this case, Weil constructed a non-degenerated, Zp[GF ]-equivariant,
symplectic pairing Tp(C) × Tp(C) → Zp(1), thus again H1

et(CF , Zp) =
HomZp(Tp(C), Zp).

(iv) If XF is connected and proper of dimension d, then H0
et(XF , Zp) = Zp

(trivial GF -action) and H2d
et (XF , Zp) = Zp(−d) (Tate twist).

Assume from now on that X is proper smooth over F . The étale cohomology
groups satisfy various wonderful properties with respect to changing the base field F ,
which are very similar to the properties we encountered for Tate-modules of elliptic
curves.

(i) (Change of algebraically closed field) First of all, if F → F ′ is any field
embedding, then

H i
et(XF , Zp)|GF ′

∼→ H i
et(XF ′ , Zp).

(ii) (Comparison with Betti cohomology) If F = F = C, then H i
et(X, Zp) is

canonically isomorphic to H i
Betti(X(C), Z)⊗ Zp.

(iii) (Finite fields) If F is a finite field of characteristic ` 6= p, the Grothendieck-
Lefschetz trace formula shows that

|X(F )| =
2 dim(X)∑

i=0

(−1)itrace(FrobF |H i
et(XF , Qp)).

(hence the rationality of the Zeta-function X). Moreover, Deligne has shown
that the characteristic polynomial of FrobF on each H i

et(XF , Qp) belongs to
Z[t], and that its roots are effective q-Weil numbers of weight i, i.e. algebraic
integers x whose complex absolute value is qi/2 in any embedding Q(x) → C,
where q = |F |. We recover in particular this way the results of Weil and
Hasse recalled for elliptic curves. For general curves, all of this was due to
Weil.

Assume that XF is connected. Note that if F ′ is any finite extension of
F in F , then it follows from the Grothendieck-Lefschetz formula above and
Deligne’s result that the term corresponding to i = 2 dim(X) dominates
in the formula for |X(F ′)|, so that |X(F ′)| = |F ′|dim(X) + o(|F ′|dim(X)) for
|F ′| → ∞ (Lang-Weil estimates).

It is conjectured that FrobF is always a semi-simple endomorphism of
H i

et(XF , Qp) (this is known when X is an abelian variety, by the work of
Weil).

(iv) (Local fields) If F is a finite extension of Q` with ` 6= p, and if X is the
generic fiber of a proper smooth scheme X over OF , we say that X has good
reduction over F . In this case, Grothendieck’s base change theorems show

1Actually, for any X then H1
et(XF , Zp) = Hom(π1(XF ), Zp) where π1(XF ) is Grothendieck’s

étale fundamental group. The point is then that any étale covering of an elliptic curve is again an
elliptic curve, hence is dominated by [N ] for some integer N ≥ 1 (note that this is clear over C).
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that the GF -representation H i
et(XF , Zp) is unramified, i.e. factors through

GF /IF = GkF
, and that we have an isomorphism of Zp[GkF

]-modules

H i
et(XkF

, Zp)
∼→ H i

et(XF , Zp)

where X = X×OF
kF over kF . In particular, the GkF

-module H i
et(XkF

, Zp) is
independent on the choice of X as above such that X×OF

F ' X. Note that
this directly generalizes, in a very simple way, the paragraph about integral
models of elliptic curves. When X has not necessarily good reduction, but
still ` 6= p, then the restriction of H i

et(XF , Qp) to the inertia group IF

satisfies no specific restriction : it can contain any continous representation
of IF that extends to GF . When ` = p, the story is quite different, and it
is known that H i

et(XF , Qp) is de Rham in the sense of Fontaine, which is
a very restrictive condition; when X has good reduction over F , it is even
crystalline (see Berger’s lectures for these notions and for the story of these
results : Fontaine, Messing, Faltings, Kato, Tsuji).

When F is a number field and when X is proper smooth over F , it easy to see that
XFv has good reduction over Fv for almost all finite places v ∈ S(F ), thus the Galois
representation H i

et(XF , Zp) is unramified outside p and the places of bad reduction
of X, and encaptures the collection of traces of Frobv on H i

et(Xv ×kFv
kFv , Zp) for

almost all v.

There are several mostly open conjectures about the GF -representation H i
et(XF , Qp)

when F is a number field. For instance, it is believed that it is semi-simple. Another
famous conjecture of Tate asserts that the GF -invariant subspace of H2i

et (XF , Qp)(i)
is generated over Qp by the cohomology classes associated to the algebraic cycles on
X of codimension i. There are several other important conjectures related to mo-
tives and L-functions that will unfortunately not be discussed here, and for which
we refer to Tate’s paper at the Corvallis conference on L-functions, and to the pro-
ceedings of the Seattle conference on Motives. When F/Q` is a local field and X
has bad reduction, an important open problem in the analysis of the action of GF

on H i
et(XF , Qp) is the so-called weight-monodromy conjecture (even when ` 6= p).

Definition 2.8. Let L be a finite extension of Qp, F a number field, and ρ :
GF → GLn(L) a Galois representation.

– We say that ρ is (strongly) geometric if there exists some proper smooth scheme
X over F such that ρ is a subquotient of H i

et(XF , Qp)(m)⊗Qp L for some i ≥ 0 and
some m ∈ Z.

– We say that ρ is weakly geometric if ρ is unramified outside some finite set
S ⊂ S(F ) and if ρ|GFv

is de Rham for each v ∈ S(F )p.

As we saw, geometric implies weakly geometric. The other direction is the so-
called Fontaine-Mazur conjecture.

Conjecture 2.9. (Fontaine-Mazur) Weakly geometric Galois representations
are geometric.

(Langlands) Any irreducible geometric Galois representation of GF of dimension
n is attached to a cuspidal algebraic automorphic representation of GLn(AF ) (and
conversely).
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We will not say anything about the meaning of the second statement here (we
shall say a bit more later for n = 2). Both conjectures are known when n = 1, in
which case it follows from Class field theory and the theory of complex multiplication
of abelian varieties. We shall discuss the case n = 2 in the next chapter. A striking
consequence of the Fontaine-Mazur conjecture is that if ρ is weakly geometric, then
the a priori p-adic numbers trace(ρ(Frobv)), for v /∈ S, are algebraic numbers (even
sums of Weil numbers!). Moreover, it implies that there are only countably many
weakly geometric Galois representations, and in particular, no non-trivial continuous
families of such.

Exercise 1. Let F be a finite field and let p be a prime invertible in F . Show that the p-
adic cyclotomic character has an open image in Z∗p. Under which condition is it surjective
?

Exercise 2. Let F be a finite extension of Qp. Show that there is a number field E
such that E×Q Qp = F . Using the global reciprocity map recE, show that if χ is the p-adic
cyclotomic character of F , then χ o recF is the composite of the norm F× → Q×

p with the
character Q×

p → Z×p sending p to 1 and which is the identity on Z×p .

Exercise 3. Consider the elliptic curve E : y2 +xy +y = x3−x2−x, for which ∆ = 17
and j = 33.113/17. Show that ρE,p is surjective for p ≡ 3, 5, 6 mod 7 and p ≥ 5.

Exercise 4. Show2 that there are exactly 5 elliptic curves over F2, namely y2 + y = x3,
y2 + y = x3 + x + 1, y2 + y = x3 + x, y2 + xy = x3 + x, y2 + xy = x3 + x2 + x, with
respective number of points over F2 : 3, 1, 5, 4 and 2.

Exercise 5. Fix a finite set P of primes and choose for each p ∈ P an elliptic curve
Ep over Fp. Show that there is an elliptic curve E over Q such that for each p ∈ P , E has
good reduction over Qp and EQp ' Ep.

Exercise 6. Show that for each finite set P of primes, say different from 2 and 17, there
are two non-isomorphic irreducible Galois representations GQ → GL2(Q5), arising from
the Tate-module of some elliptic curves over Q, which are unramified at the primes in P
and with the same trace of Frob` for each ` ∈ P .

Exercise 7. Admit that for each prime ` there is an elliptic curve E over F` such that
|E(F`)| = 1 + ` (it is a special case of the footnote of Ex. 4). Show that for each prime
p, there is an elliptic curve E over Q such that the representation GQ → GL2(Fp) on
E(Q)[p] is surjective (for instance, construct by a variant of Ex. 6 an E which has split
multiplicative reduction at some prime ` and with suitable good reduction at some other
prime `′). In particular, there is a Galois extension of Q with Galois group GL2(Fp).

Exercise 8. Show that for p an odd prime, and E an elliptic curve over Qp, there is
some g ∈ GQp that does not act on E(Qp)[p] has an homothety. Deduce that if E is an
elliptic curve over Q, then E(Q)[p] cointains at most two GQ-stable lines if p is odd. What
if p = 2 ?

Problem 9. (Algebraic Hecke characters) Let F be a number field. A Hecke-character
is a continuous morphism η : F×\A×

F → C×. If η is such a character, and if v ∈ S(F ), we
denote by ηv : F×

v → C× the restriction of η to F ∗
v , it is a continuous character.

2By theorems of Tate and Honda, for any prime p and any integer a such that a2 ≤ 4p, there
exists an elliptic curve E over Fp such that |E(Fp)| = p+1−a. This elliptic curve E is not unique
up to isomorphism in general, but it is up to isogeny (over Fp).
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– Show that ηv(O×
Fv

) = 1 for almost all v, hence that the equality η((xv)) =
∏

v ηv(xv)
makes sense and holds for all idèles (xv).

We say that η is algebraic if for each σ ∈ Hom(F, C) there is an (necessarily unique)
integer aσ such that if v ∈ S(F )∞ is the place induced by σ, then ηv(z) = σ(z)aσσ(z)

aσ if
v is complex, and ηv(z) = εv(z)zaσ for some finite order character εv : F×

v → {±1} if v is
real. The aσ are called the weights of η. Assume that η is algebraic.

– Show that the subfield of C generated by the ηv(z) for each finite place v and each
z ∈ F×

v is a number field (called the coefficient field of η).

– (Weil) Fix some pair of field embeddings ι∞ : Q → C and ιp : Q → Qp. They define a
bijection ιpι

−1
∞ : Hom(F, C) ∼→ Hom(F, Qp), so that we may view the aσ as indexed by this

latter set as well. Denote moreover by vσ ∈ S(F )p the place above p defined by the element
σ ∈ Hom(F, Qp). Show that the continuous character A×

F → Q×
p defined by the formula

ηλ((zv)) =
∏

v∈S(F )R

εv(zv)
∏

v∈S(F )f

ιpι
−1
∞ (ηv(zv))

∏
σ∈Hom(F,Qp)

σ(zvσ)aσ

is trivial over kernel of the global reciprocity map recF , hence defines a continuous character
ηι : GF → Q×

p . Show that ηι is unramified outside the finite set Sp(F ) ∪ S∞(F ) ∪ {v ∈
S(F )f , ηv(O×

Fv
) 6= 1}.

– Define the Norm |.| : A×
F → R× by the formula |(xv)| =

∏
v∈S(F ) |xv|v. Show that |.|

is an algebraic Hecke character. Show that aσ = 1 for all σ, that the coefficient field of |.|
is Q, and that its associated p-adic Galois character is the p-adic cyclotomic characters.

– If F is a totally real field, show that any algebraic Hecke character of F has the
form |.|mη where m ∈ Z and where η has finite image (such characters are called Artin
Hecke-characters, they are obviously algebraic).

Problem 10∗. Let E be the elliptic curve y2 = x3 − x over F = Q(i) with i2 = −1
(∆ = 28), and fix some prime p.

– Show that (x, y) 7→ (−x, iy) defines an endomorphism [i] of E such that [i]2 = [−1]
and that Tp(E) is free of rank 1 over Zp[i] := Zp[X]/(X2 + 1).

– Show that the action of GF on E(F ) commutes with [i], and that ρE,p factors through
a Galois representation GF → Zp[i]×. In particular, ρE,p(GF ) is abelian.

– (*) Show that there is an algebraic Hecke character η of F with weights 0 and 1 such
that ρE,p o recF is a Galois representation attached to η.

– Show that any finite abelian extension of F is contained in the field generated by the
(x, y)-coordinates of the N -torsion points of E(F ) for some N ≥ 1.

3. Modular Galois representations

3.1. Modular forms. We review now the theory of modular forms. Here are
some classical references : Shimura "Arithmetic theory of automorphic functions",
Ogg "Modular forms and Dirichlet series", Miyake "Modular forms", Serre "Cours
d’arithmétique". Part of this theory is easier to understand when we introduce
the language of automorphic representations of GL2 (see e.g. Bump’s or Gelbart’s
books), we shall not adopt this point of view here (but maybe later when we shall
deal with quaternion algebras).
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3.1.1. The Poincaré upper half-plane. Let H = {τ ∈ C, Im(τ) > 0} be the
Poincaré upper-half plane. The natural projective action of GL2(C) on P1(C) induces
an action of SL2(R) on H, and even of GL2(R)+ = {g ∈ GL2(R), det(g) > 0}, given

explicitely by the classical formula
(

a b
c d

)
τ = aτ+b

cτ+d
. If k ∈ Z, f : H → C, and

γ =

(
a b
c d

)
∈ GL2(R)+, we set

(f |kγ)(τ) = (cτ + d)−kf(γτ) det(γ)k/2.

One checks at once that this defines a right action3 of GL2(R)+ on the space O(H)
of holomorphic functions on H, hence an action of its discrete subgroup SL2(Z) as
well by restriction.

For N ≥ 1, recall that Γ1(N) ⊂ SL2(Z) is the finite index subgroup whose

elements are upper unipotent modulo N , i.e. of the form
(

a b
c d

)
with c = 0 mod

N and a = d = 1 mod N . It is torsion-free when N ≥ 4 and acts freely on H in
this case. The group Γ1(N) is normalized by the slightly bigger subgroup Γ0(N) ⊂
SL2(Z) whose elements only satisfy c = 0 mod N , and γ 7→ d mod N induces a group
isomorphism Γ0(N)/Γ1(N)

∼→ (Z/NZ)×. We shall view this way any (Dirichlet)
character ε : (Z/NZ)× → C× as a character of Γ0(N).

3.1.2. Modular forms. A (holomorphic) modular form of level N , weight k, and
character ε, is a holomorphic function f on H such that (i) and (ii) below hold :

(MF1) f |kγ = ε(γ)f for all γ ∈ Γ0(N),

(MF2) f is holomorphic at the cusps : for all σ ∈ SL2(Z), the function f |kσ has
an expansion as a power series in e2iπτ/M for some integer M ≥ 1, with only ≥ 0
exponents.

Lemma 3.2. (MF2) is equivalent to the similar property where σ ∈ SL2(Z) is
replaced by σ ∈ GL2(Q)+.

Proof — Remark that any element in P1(Q) may be written γ(∞) for γ ∈ SL2(Z)
: write x = a/b with (a, b) = 1 and use a Bezout relation to define a γ such that
γ(∞) = x. It follows that

GL2(Q)+ = SL2(Z).B

where B is the subgroup of upper triangular matrices in GL2(Q)+. If f has an
expansion as a power series in e2iπτ/M for some integer M ≥ 1, with only ≥ 0
exponents, then so does f(aτ +b) for a ∈ Q× and b ∈ Q (increasing M if necessary).
The first part of the lemma follows. �

Note that if (MF1) is satisfied, then (MF2) above only has to be checked for σ
in a system of representative of the finite set of orbits

Γ1(N)\GL2(Q)+/B = Γ1(N)\P1(Q),

3For k = 0 it is the natural induces action on O(H). For k 6= 0, the reason for this is that
the map GL2(R)+ → O(H)×, γ 7→ (τ 7→ det(γ)1/2

cτ+d ) defines a 1-cocycle of GL2(R)+ on O(H).
This is an easy computation, which is obvious for its square, which is the Jacobian cocycle: for

γ =
(

a b
c d

)
∈ GL2(R)+, ∂γτ

∂τ = det(γ)
(cτ+d)2 .
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called the cusps of Γ1(N).

Modular forms of level N , weight k, character ε form a complex sub-vectorspace
of O(H) denoted by Mk(N, ε). When in (MF2) we replace “≥ 0 exponents" by
“> 0 exponents", we say that f is a cuspform. Cuspforms form a sub-vector space
Sk(N, ε) ⊂ Mk(N, ε).

Definition 3.3. As
(

1 1
0 1

)
∈ Γ1(N), f(τ + 1) = f(τ) for f ∈ Mk(N), so

f(τ) =
∑

n≥0 anq
n where q := e2iπτ . This specific expansion is called the q-expansion

of f .

Note that a0 = 0 if f is a cuspform, the converse being true in general only if
N = 1 as SL2(Z) has only one cusp.

An important fact is that Mk(N, ε) is finite dimensional. This may be proved for
instance by integrating df/f , for f ∈ Mk(N, ε), on the boundary of a fundamental
domain of Γ1(N) acting on H (a finite union of transformations of the well-known
domain for SL2(Z)) and noticing that if f vanishes say at ∞ to a sufficiently high
order explicit in terms of N and k, then f = 0 (see e.g. Serre “Cours d’arithmétique"
for this point of view detailled when N = 1). More conceptualy, form each k and
N there is a line bundle Lk on the compact Riemann surface Γ1(N)\(H

∐
P1(Q))

whose sections are exactly the modular forms of weight k level N (ε varying). It
follows from the computation of this line bundle and Riemann-Roch’s formula that
there are explicit formulas formulas for the dimension of Sk(N, ε) whenever k ≥ 2
(see Shimura’s book for ⊕εSk(N, ε), there is a formula due to Cohen-Oesterle for
the individual summands).

One can show that Sk(N, ε) has an explicit complement in Mk(N, ε) generated by
Eisenstein series (see Miyake’s book), so that the really mysterious part of Mk(N, ε)
is Sk(N, ε). As −1 ∈ Γ0(N), note that Mk(N, ε) = 0 if ε(−1) 6= (−1)k. Moreover,
we can show that Mk(N, ε) = 0 if k ≤ 0, so we assume from now on k > 0.

In Serre’s Cours d’arithmetique, you will find a detailed study of the case N = 1
(hence ε = 1 as well). The first nonzero cuspform is Ramanujan’s famous ∆ function,
which is a generator of S12(1), and whose q-expansion is ∆ = q

∏
n≥1(1− qn)24. As

another example, S2(11, ε) = 0 if ε 6= 1 and S2(11, 1) = Cf where f = q
∏

n≥1(1 −
qn)2(1− q11n)2 (see Shimura’s book).

3.3.1. Hecke operators. The vector space Mk(N, ε) is equipped with a natural
collection of endomorphisms called Hecke operators. In particular, for each prime `
with (`, N) = 1, we have an operator T` defined as follows. Let ∆(N, `) ⊂ M2(Z) be

the subset of matrices with determinant ` and congruent to
(

1 ∗
0 `

)
modulo N .

Lemma 3.4. ∆(N, `) = Γ1(N)

(
1 0
0 `

)
Γ1(N) =

∐`
i=0 Γ1(N)xi, where xi =(

1 i
0 `

)
if i < ` and x` = δ

(
` 0
0 1

)
where δ ∈ Γ0(N) is any element mapping to

` ∈ (Z/NZ)×.
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Proof — Note first that we have the inclusions

∆(N, `) ⊃ Γ1(N)

(
1 0
0 `

)
Γ1(N) ⊃

∐̀
i=0

Γ1(N)xi.

Indeed, the first one is obvious, as well as the second one for the xi with i < `. For
x` remark that we may assume that the d-coefficient of δ is divisible by ` as the
reduction mod ` : Γ1(N) → SL2(F`) is well-known to be surjective for (N, `) = 1

(see Exercise 2), in which case we even have x` ∈
(

1 0
0 `

)
Γ1(N) and we are done.

As a consequence, we may deduce the case N ≥ 1 to N = 1 just by taking the
intersection with ∆(N, `). Indeed, if u ∈ ∆1(N, `) and γ ∈ SL2(Z) are such that
γu ∈ ∆1(N, `), then we see that γ ∈ Γ1(N).

Consider now the right action of GL2(Q)+ on Z-lattices in Q2 given by γ.Λ =
tγ(Λ). Then SL2(Z) is the stabilizer of Z2. As |Z2/g(Z2)| = | det(g)| for any g ∈
M2(Z), the orbit ∆(1, `).Z2 is exactly the set of sublattices of Z2 of index `. As ` is
prime, there are ` + 1 such lattices, which are the xi.Z2 for i = 0, . . . , `, and we are
done. �

Definition 3.5. Fix k ∈ Z. If f : H → C, we set T`(f) := `k/2−1(
∑`

i=0 f |kxi).

Lemma 3.6. T` preserves Mk(N, ε) and Sk(N, ε). On q-expansions:

T`(
∑
n≥0

anq
n) =

∑
n≥0

a`nq
n + ε(`)`k−1

∑
n≥0

anq
`n.

Moreover, T` and T`′ commute each other.

Proof — ∆(N, `) is stable by left and right translations by Γ1(N), and by conjuga-
tion by Γ0(N). Any coset Γ1(N)xi is then set to another one by any right translation
of an element of Γ1(N), or conjugation by an element of Γ0(N). It follows that if
f satisfies (MF1) then so does T`(f). It follows from lemma 3.2 that if f satisfies
(MF2) (resp. is a cuspform), then so does T`(f), hence the first statement.

By definition, (f |kxi)(τ) = `−k/2f( τ+i
`

) if i < `, (f |kx`) = `k/2ε(`)f(`τ) if i = `.
The expression for T` follows then from the relation

∑`−1
i=0 e2iπn(τ+i)/` = 0 for (n, `) =

1, ` qn/` otherwise. One checks on the q-expansion that T` and T`′ commute. �

(The T` are actually normal, hence semi-simple, for some natural adjunction de-
fined by mean of the Peterson product on cuspforms.) A nonzero form f ∈ Mk(N, ε)
which is a common eigenvector for all the T`-operators is called an eigenform. If f is
such a form, and if we write T`(f) = a`f for each `, one can show that the subfield
of C generated by the a` is a number field, called the coefficient field of f (see below
when k = 2). If f is a cuspform which is “normalized”, i.e. whose coefficient a1

of q in its q-expansion satisfies a1 = 1, then we see from the formula for T` that
a`(f) = a` for each ` with (`, N) = 1: the Hecke eigenvalues can be read off from
the q-expansion (see Exercise 4).

Exercise 1. Show that the characteristic polynomial of a finite order element of SL2(Z)
has the form X2 + tX + 1 where −2 ≤ t ≤ 2. Deduce that Γ1(N) is torsion free if, and
only if, N ≥ 4. What about Γ0(N) ?
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Exercise 2∗. Show that for each integer N ≥ 1, the reduction map SL2(Z) → SL2(Z/NZ)
is surjective. As an application, compute the index of Γ1(N) inside SL2(Z).

Exercise 3. (Diamond operators) Define Mk(N) as the space of holomorphic functions
on H such that f |kγ = f for all γ ∈ Γ1(N). Show that (γ, f) 7→ f |kγ defines a right action
of Γ0(N)/Γ1(N) on Mk(N) and that Mk(N) = ⊕εMk(N, ε).

If d ∈ (Z/NZ)×, and f ∈ Mk(N), we usually write f |k〈d〉 for f |kγ where γ ∈ Γ0(N) is
any element with image d ∈ (Z/NZ)×.

Exercise 4. (Statements of Atkin-Lehner theory) For d ≥ 1 consider the element

s =
(

d 0
0 1

)
∈ GL2(Q)+.

For N ≥ 1 and d|N , remark that sΓ1(N)s−1 ⊂ Γ1(N/d). Deduce that for d|N , f(τ) 7→
f(dτ) defines an injective linear map ud,ε′ : Mk(N/d, ε′) → Mk(N, ε), where ε is the
composite of ε′ and the natural map (Z/NZ)× → (Z/N

d Z)×. How does ud,ε′ act on q-
expansions ? Show that for ` prime to N , T` commutes with ud,ε′ .

An element of Mk(N, ε) which lies in the image of ⊕d|N,ε′ud,ε′ is called an old form. A
nonzero eigenform f ∈ Sk(N, ε) which is not old is called a new form. A theorem of Atkin-
Lehner asserts that for each such newform f , the biggest subspace Mk(N)[f ] ⊂ Mk(N)
containing f and which is a common eigenspace for the T` operators for all but finitely
many ` with (`,N) = 1 has dimension 1. A newform f has the property that a1(f) 6= 0, in
particular Mk(N)[f ] = Cf contains unique newform normalized so that a1(f) = 1. Last
but not least, for each nonzero eigenform f ∈ Sk(N, ε), there is a newform g of some level
N ′|N with the same eigenvalue of T` for all ` prime to N .

Exercise 5. For N ≥ 1, consider the element

wN =
(

0 −1
N 0

)
∈ GL2(Q)+.

Show that wNΓ1(N)w−1
N = Γ1(N). Deduce that the map f(τ) 7→ N−k/2f(−1/Nτ)τ−k

induces an isomorphism Mk(N, ε) ' Mk(N, ε−1), whose square is multiplication by (−1)k.
Does it commute with T` for (`,N) = 1 ?

3.7. Galois representations attached to modular eigenforms. Let f ∈
Sk(N, ε) be an eigenform of weight k ≥ 1, and write T`(f) = a`f for each prime `
which is prime to N . Let E be the coefficient field of f , choose some prime p as well
as some p-adic place λ ∈ S(E)p.

Theorem 3.8. (Eichler-Shimura, Igusa, Deligne, Ribet) There is a unique ir-
reducible Galois representation ρf,λ : GQ → GL2(Eλ) which is unramified outside
Np∞, and such that

det(1− Tρf,λ(Frob`)) = 1− a`T + ε(`)`k−1T 2

for each prime ` not dividing Np.

This theorem is fundamental in algebraic number theory, however its proof re-
quires a huge amount of mathematics. The existence of ρf,λ is due to Eichler-
Shimura, completed by Igusa, when k = 2, to Deligne when k > 2 and to Deligne-
Serre when k = 1. By construction, it is a geometric Galois representation (Eichler-
Shimura, Deligne, Sholl). See Appendix A for a sketch of the proof of Eichler-
Shimura. The irreducibility assertion is due to Ribet. By the property of ρf,λ, we
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see that
det(ρf,λ) = εχ1−k

where χ is the p-adic cyclotomic character. As ε(−1) = (−1)k, det(ρf,λ(c∞) = −1.
When k = 1 (and only in this case by the computation above of the determinant),
Deligne and Serre showed that ρf,λ has a finite image (hence comes from an Artin
representation). The determination of ρf,λ|GQ`

for `|N or ` = p is also essentially
achieved4. It is best formulated in terms of the local Langlands correspondence and
the representation of GL2(Q`) associated to f in the case ` 6= p (Langlands, Carayol);
when ` = p it may described in terms of the p-adic local Langlands correspondence
(Faltings, Saito, Breuil, Emerton).

Definition 3.9. Let L/Qp be a finite extension of Qp. A Galois representation
GQ → GL2(L) is modular if it is isomorphic to some ρf,λ as above.

Let Fq be a finite field. A Galois representation GQ → GL2(Fq) is modular if it
is isomorphic to the residual representation of a modular Galois representation ρf,λ.

(In both definition, we authorize to enlarge the coefficient field if necessary: for
instance if L is a finite extension of Eλ, we agree that ρf,λ ⊗Eλ

L is modular.)

In the past years, several wonderful conjectures about modular Galois represen-
tations have been proved, chronologically :

(i) (Taniyama-Shimura-Weil conjecture) If E is an elliptic curve over Q, then
Vp(E)∨ = Vp(E)(−1) is modular for each p. It has been proved by Wiles, Taylor-
Wiles, Breuil-Conrad-Diamond-Taylor. In this case, the associated modular form f
has weight 2 and coefficient field Q. This allowed Wiles to complete the proof of
Fermat’s last theorem, thanks to previous works of Frey, Hellegouarch and Ribet.

(ii) (Serre’s conjecture) Any Galois representation GQ → GL2(Fq) which is odd
(i.e. c∞ has determinant −1) is modular. This was conjectured by Serre and has
been proved by Khare, Khare-Wintenberger, using works of many people.

(iii) (Fontaine-Mazur conjecture for GL2) Any weakly geometric p-adic Galois
representation ρ : GQ → GL2(L) which is odd, and such that ρ|GQp

has distinct
Hodge-Tate weights, is modular up to a Tate-twist. This has been reently proved
by Kisin and Emerton, again using works of many people, notably the advances in
the p-adic Langlands program by Breuil, Colmez and others.

Of course, (iii) implies (i). This kind of statement is called a modularity theo-
rem. One general advantage of modular representations is that they can be counted
(for instance, we know explicitely dim Mk(N, ε)), moreover they are easy to manip-
ulate (this will be very clear when we shall deal with congruences). However, the
most well-known advantage is that their L-functions are easily shown to be entire
(Hecke), something which is conjectured for any geometric Galois representation
not containing Qp(m) but completely out of reach in general. For instance, before
knowing (i) it was not possible to define unconditionnaly the order at s = 1 of the
L-function of an arbitrary elliptic curve over Q, which was very annoying regarding
the Birch-Swinnerton conjecture.

4It is, for instance, up to semi-simplification, and even up to Frobenius semi-simplification
when ` 6= p.
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There are many people working on extending the various aspects of these results
to higher dimensional Galois representations, or over base fields different from Q,
mostly using general automorphic forms and Shimura varieties. It is not the place
however to describe these advances.


