Geometric and modular Galois rep-
resentations

1. Galois groups and Galois representations

1.1. First definitions. Let F' be a field, F a separable algebraic closure of F,
and Gr := Gal(F/F) the absolute Galois group of F, i.e. the group of F-linear
field automorphisms of F'.

For each finite Galois extension K of F inside F, a basic fact from field theory is
that the restriction induces a surjective group homomorphism Gp — Gal(K/F), so
that G is isomorphic to the projective limit of the Gal(K/F') where K runs over
all the extensions as above. In particular, Gr is a compact, totally disconnected,
topological group for the product (or “Krull”) topology: the subgroups of the form
Gal(F/K) with F C K C F a finite extension are open, and form a fundamental
system of neighborhoods of 1 € Gp.

Recall Galois theory: the map K C F — Gal(F/K) C G is a bijection between
(possibly infinite) extensions of F' inside F' and closed subgroups of G, the inverse
bijection being H s F' .

A Galois representation of F' is a continuous representation

p:Gp — GL,(A)
where A is some topological, separated, commutative ring.!

The normal subgroup Ker p = p~1({1}) is closed, hence of the form Gal(F/F(p))
for a unique Galois extension F(p) of F inside F. We sometimes call F(p) the
extension of F' cut out by p, its Galois group Gal(F(p)/F) ~ p(Gr) is a closed
subgroup of GL,,(A). From this perspective, finding A-valued Galois representations
first amounts to finding (possibly infinite) Galois extensions K/ F whose Galois group
may be realized as a closed subgroup of GL,(A). When A is discrete, note that Ker p
is an open subgroup, so F'(p) is a finite extension of F.

We will typically consider the following kind of rings A:

(i) Finite fields, or more generally, finite rings, like F, (the finite field with
q elements) or (Z/p*Z)[X,Y]/(X*, (X +Y)%Y7). We shall always equip
them with the discrete topology.

(ii) A = C the field of complex numbers, equipped with its usual topology, in
which case we talk about Artin representation. As there exists a neighbor-
hood of 1 € GL,(C) containing no non-trivial subgroup (see the exercices),
an Artin representation also factors through the Galois group of a finite
Galois extension of F.

(iii) A is a finite extension of @Q,, or more generally a finite dimensional Q,-
algebra. In this case, A is endowed with its natural topology of normed
vector space over Q,, for which it is a topological Q,-algebra. When A is a
field, we talk about p-adic Galois representations.

'We usually equip M, (A) x A ~ A"’ +1 with the direct product topology and view GL,,(A) as
the closed subset {(z,y),det(x)y = 1}.



(iv) Affinoid algebras over Q,. These are the natural coefficients when consid-
ering families of representations with coefficients of type (iii), which are
exactly the zero dimensional affinoid algebras. We will say more about
them in due time.

(v) Any other interesting topological ring !

For our purposes in this course, we will be mostly interested in p-adic Galois
representation Gg — GL, (L) where L is a finite extension of Q,, and in families
of such representations. In the remaining part of this paragraph, we introduce the
first natural invariants of such representations : the residual representation.

If L is a finite extension of Q,, we denote by Oy, its ring of p-adic integers, by 7,
a uniformizer of O, and by ki, = Op /(7). In the following statement, G could
be replaced by any profinite group.

LEMMA 1.2. Let L be a finite extension of Q, and p : Gp — GL,(L) a Galois
representation. There are Op-lattices A C L™ which are stable by Gr. The semi-

simplification of the representation of Gp on A/ A ~ kI does not depend on the
choice of A.

Recall that the semi-simplification of a representation of a group G on a finite
dimensional vector space V over a field k is the direct sum of all the Jordan-Holder
constituents of the k[G]-module V. We usually denote it by V*. In this definition, we
take multiplicities into account: dim;V = dim, V. The representation V' is semi-
simple iff V' ~ V* as k[G]-modules. Concretely, if (V;) is an increasing filtration of
sub-representations of V' such that V;,/V; is irreducible, then V* ~ @,V;,1/V;.

Proof — As G is compact and p is continuous, G = p(Gr) is a compact subgroup
of GL,(L). Let A be any Op-lattice inside L™. Then {g € GL,(L),g(A) = A} is
an open subgroup of GL, (L), hence its intersection H with G is an open subgroup
of G. In particular, A" = 37 _,g(A) is a finite sum over a set of representative of
G/H, hence is a lattice as Oy, is a DVR, G-stable by construction.

Note that if A is a G-stable lattice, so is A’ = 7t A for i € Z, and the multipli-
cation by 7¢ induces a ky[G]-isomorphism A/7 A = A /7 A, Let now Ay and A,
be two G-stable lattices. Then so are the L; := Ay + wt Ay for i € Z. Note that
L;=A; for i >0, L; = 7wt Ay for —i > 0, and 7, L; C Ly C L; for each i € Z. Tt
follows that we may assume that 7y A; C Ay C A;. We have an exact sequence of
k[G]-modules

0— AQ/?TLAl — A1/7TLA1 — Al/AQ — 0.
On the other hand, Ay C Ay C 7T21A2, so the kp[G]-module Ay /mp Ay ~ 7T21A2/A2
is as well an extension of 77 'Ay/A; =~ Ay/mr Ay by Ay/As. O

DEFINITION 1.3. Let L be a finite extension of Q, and p : Gp — GL,(L) a Galots
representation. We denote by p : Gp — GL, (k) the semi-simple representation
defined by the previous lemma. It is called the residual representation of p.

An alternative proof for the second-part of the lemma is to appeal to a classical
result of Brauer-Nesbitt : two finite-dimensional k-representations V; and V5 of a
group G have isomorphic semi-simplifications if and only if for all ¢ € G we have
det(1 — tg|Vy) = det(1 — tg|Va) € k[t]:
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LEMMA 1.4. Let k be a field, R a k-algebra (unital, associative, but non nec-
essarily commutative), and let My,. .. , M, be finitely many non-isomorphic simple

R-modules which are finite dimensional over k. There is an element e; € R such
that e;n, = idys, and e;(M;) =0 for j # i.

In particular, if M and N are two semi-simple R-modules of finite dimension
over k, then M ~ N as R-module if and only if det(1 — tans) = det(1 — tajy) for
all a € R (Brauer-Nesbitt). When k has characteristic 0, or when d = dim(M) =
dim(N) satisfies d! € k*, it is enough to assume that trace(a|M) = trace(a|N) for
all a € R.

Proof —  We may replace R by its image in Endg(®;M;), so we may assume
that R is finite dimensional over k, and even semi-simple as it has a faithful semi-
simple module. Wedderburn-Artin theory shows that R ~ [], My, (D) where
D; = Endg(M;) is a division k-algebra (Schur’s lemma) and d; = dimp, (M;). The
diagonal element (0, ..,1,..,0) with 1 at place ¢ and 0 elsewhere in this composition
does the trick. To check the second statement, let M; be the simple constituents of
M @ N and denote by m; and n; the respective multiplicity of M; in M and N. If
e; € A is as in the first part, then the equality of characteristic polynomials, or of
traces in the second case, applied to e; shows that n; = m,. O

We shall be mostly interested in Gg, or in G for a number field . To give
interesting examples of Galois representations, it is necessary to review a bit the
structure of these Galois groups.

Exercise 1. Let |||.||| be a triple norm on M, (C). Show that U = {M,|||M — 1||| < 1}
is an open subset of GLy,(C) and that the unique subgroup of GL,(C) inside U is {1}.
(Observe first that if M € U, each eigenvalue A of M satisfies |\ — 1| < 1.)

Exercise 2. Let p : Gp — GLyp(Q,) be a continuous representation. Show that p(Gr) C
GL, (L) for some finite extension L of Q, inside Q, (use Baire’s theorem,).

Exercise 3. Let G C GLy,(Zyp) be a subgroup. Show that G has a unique stable lattice
in Qp (up to homotheties) if, and only if, G acts irreducibly on Fy.

Exercise 4. Let G C GLa(Z,) be the subgroup of matrices which are upper triangular
modulo p. Show that up to homotheties, G has exactly two stable lattices in Q]%, and that
the two residual representations are non isomorphic. Generalize to dimension n.

Ezercise 5. Show that G C GL,(Qp) has only finitely many stable lattices in Qy (up
to homotheties) if, and only if, G acts irreducibly on Q5-

Open problem (to the author). Let py, : GLa(Zp) — GLy11(Qyp) be the n-th symmetric
power of the standard representation py, what is the number ¢(p,n) of homothety classes
of Ziy-lattices of Qg“ which are stable by GLa(Zy,) ? Much easier subproblem : show that
l(p,n) =1 if and only if n < p, and compute £(p,p).

1.5. The local-global structure of the Galois group of a number field.
When F'is a finite field with ¢ elements, G ~ Z, a canonical topological generator of
G being the arithmetic Frobenius element frobp : x +— x%. The geometric Frobenius



is by definition the inverse of the arithmetic Frobenius, and will be denoted by
Frobr € GF.

When F' is a finite extension of Q,, the structure of G'r is rather well-known.
There is a natural filtation of G by closed normal subgroups, called the ramification
filtration (see Serre’s Corps locauz, or maybe Berger and Fargues lectures). The first
subgroup of this filtration is the inertia group

Ir = Gal(F/F™)

where F'™* C F is the maximal unramified extension of F. Explicitely, F'™ is the
abelian extension generated by all roots of unity of order prime to p. As is well
known, the natural map G/l — Gal(kr/kr) is an isomorphism, so we shall view
Froby,. as an element of Gr/Ir. The subgroup I has a unique pro-p-Sylow subgroup
Pr C I called the wild inertia subgroup, and Irp/Pp ~ [], 2p Le- Explicitely, Ir/Pg

is the Galois group of the extension F*' of F'™ generated by the w}/ " where n is prime
to p (this does not depend on the choice of 7). The subgroup Pr is normal in G
and the action by conjugation of Froby, on Ir/Pr is the multiplication by ¢, where
q = |kr|. Local class field theory provides a canonical reciprocity map

recp : [ — G
sending 7p to the geometric Frobenius in Gr/Ir and sending O isomorphically
onto the image of [ A n Gab Thus the reciprocity map induces an isomorphism
Fx — G , where F X is the completlon of F* with respect to all the open subgroups

of finite 1ndex For instance, @X ~ 7 x Ly ~ Gab. For other properties of the
reciprocity map, see Serre’s Corps locauz or Neuklrch s Class field theory.

For sake of completeness, recall that as C is algebraically closed we have G¢ =
{1} and Gr = Z/2Z. We convene that C/R is ramified and set Ig = Gg. In these
cases, we define

recg : R* — G2 = Gy

as the morphism with kernel RZ,, and recc is the trivial morphism C* — G.

>0

When F' is a number field, the structure of G is not so well known. Re-
call that the Kronecker-Weber theorem asserts that the naural surjection Ggo —
Gal(Q¥9/Q) = 7> induces an isomorphism G@b ~ 7*. Here are two famous open
problems:

CONJECTURE 1.6. (Shafarevic) The closed subgroup of G generated by the com-
mutators is a free pro-finite group over countably many generators.

(Galois inverse problem) Any finite group is a quotient of Gg.

In some sense, these conjectures say that Gg is not so interesting as an abstract
group. On the other hand, G has an extra "local-global" structure that usually
carries a deep arithmetic information.

Denote by S(F') the set of places (or equivalence classes of valuations) of the
number field F. If S is a subset of S(F') we shall write Sy for the subset of finite
places in F', S, for the subset of archimedean places, and we shall use various other
suggestive notations like S, C S for the subset of places above the prime p, or Sg C S
for the subset of real places in S. For each v € S(F), denote by F, the completion
of F with respect to v. Let ¢, : F — F, be a field embedding extending F — F,,.
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It defines a continuous group homomorphism ¢} : G, — Gp, the conjugacy class
of which in G does not depend on the choice of ¢,. The local-global structure
alluded above is this collection of conjugacy classes of morphisms G, — G for all

veS(F).

If S C S(F) we denote by Fs C F the maximal algebraic extension unramified
outside S, i.e. such that ¢,(Fg) C F™ for each v ¢ S and each ¢,. Set

GF,S = Gal(Fs/F)

By definition, G s is the quotient of G’ by the closed normal subgroup generated
by the Ip, for all v ¢ S. For each v ¢ S, the maps ¢} : Gp, — Gpg factor through
Gy, , hence Gpg contains a canonical conjugacy class:

Frob, := ULi(Frobkv) C Grg.

Ly

We sometimes view Frob, as an element of Ggg well defined up to conjugacy. For
each v € Sg, the maps ¢ : Ggr = G, — Gps send the order two element of G to
a conjugacy class of complex conjugations in Gpg (even in Gr) denoted c,.

We say that a Galois representation p : Gp — GL,(A) is unramified outside S' if
p(Ig,) = 1for each v ¢ S, or which is the same if it factors through Grs. We also say
that p is unramified outside some integer N (resp. Noo) if it is unramified outside
the set S of places of F' dividing N (resp. N or co). In this case, it makes notably
sense to consider for each v ¢ S the characteristic polynomial of Frob, € Gps.

From now on, S will always denote a finite subset of S(F'). There are several
wonderful questions and conjectures about the groups Grs.

CONJECTURE 1.7. (Shafarevic) Is Gr s topologically finitely generated ?

("finite" Fontaine-Mazur) Any Galois representation p : Gg s — GL,(Q,) such
that p(Ig,) is finite has finite image.

The general conjecture of Fontaine-Mazur will be dicussed a bit later. Here are
some well-known but important positive results on the Gp .

THEOREM 1.8. (Minkowski) Gg (y = {1}.

(Hermite) For each number field F' and any prime p, Hom(Grgs,F,) is a finite
dimensional F,-vector space.

(Cebotarev) The union of the conjugacy classes of Frob, for all v ¢ S is dense
m GF,S-

Of course Hom means “continuous group homomorphisms” here. The first part
of the theorem says that for each number field F' # Q, there is at least one prime
ramified in F'. The second part of the theorem follows from Hermite’s classical result
in geometry of numbers that for each integer n > 1, there is only finitely many
number fields of degree n which are unramified outside S. Note that Cebotarev
theorem also holds if we restricts to a density one subset of primes v € S(F)\S.

PROPOSITION 1.9. Let L/Q, be a finite extension and let p; and ps be two semi-
simple p-adic Galois representations Gps — GL,(L). Then py ~ ps if, and only if,
for each v ¢ S we have trace(p;(Frob,)) = trace(pz(Frob,)).



We leave as an exercise to prove a similar statement if L is a finite field (if
p = char(L) > 0 and p < n, use the full characteristic polynomial).

Proof — Assume that the trace equality holds for all v ¢ S. So the T; = trace(p;) :
Gps — L are two continuous functions that coincide over the dense subset of

conjugacy classes of Frob, for v ¢ S, thus they are equal. We conclude by lemma 1.4
applied to k = L, R = L|Grg|, M = p; and N = p,. O

Let us end this paragraph by describing the abelianization of Gr when F'is a
number field. Recall that the idéles A of F is the subgroup of [ ] ) £, whose

elements (z,) satisfy x, € O, for almost all v (i.e. all but maybe finitely many). It
is a locally compact topological space for the product topology. We have a diagonal
embedding F* — Ay with discrete image, as well as closed embeddings F* —
Af, z— (1,...,1,2,1,...) (at place v) for each v. As Galois number fields are
unramified outside finitely many primes, the collection of maps recp, : £ — G%E’J,
together with the ¢, define a continuous map

recr : A% — G
called the global reciprocity map (as the target is abelian, the conjugacy class of
morphisms ¢} is a well-defined and unique morphism for each v). The main theo-
rem of global class field theory shows that recg is surjective and its kernel is the

closed subgroup generated by F* and the connected components of 1 in F,* for each
archimedean v € S(F). In particular, an exercise on idéles (do it!) shows that:

THEOREM 1.10. (Global class field theory) recy induces an exact sequence

L — U\({£1)" "= < [T 05) — 6% — CLOr) — 1
UES(F)f

where Up is the closure of O inside the left hand side, diagonally embedded®, and
where Cl(Op) is the ideal class group of Op.

COROLLARY 1.11. G%E’S sits in a similar sequence with S(F) replaced by S ev-
erywhere.

For many results about local and global Galois groups, see Serre’s Corps lo-
cauz, Neukirch’s Class field theory and the book Cohomology of number fields, by
Neukirch, Schmidt and Wingberg. Class field theory gives a description of all the
1-dimensional Galois representations. (There are however still two unknown: the po-
sition of Uy inside the idéles ("Leopold’s conjecture") and the finite group Cl(Op).)
Generalization of this picture to the higher dimensional Galois representations is
one of the main aim of algebraic number theory, mostly contained in the theory of
automorphic forms and in the Langlands program in its various aspects.

Exercise 1. Let F — F' be a field embedding. Let i,j : F — F' be two extensions of
this embedding and i*,j* : Ggpr — GF be the associated group homomorphisms. Show that
there exists some h € Gg such that hi*(g)h=* = j*(g) for all g € Gpr.

Exercise 2. Show that the algebraic numbers over Q are dense in @p for the p-adic
topology. Deduce that the morphisms Gr, — GF are injective.

2For v € S(F)g, the map FX — {£1} we are thinking about is the one giving the sign of an
element.
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Ezercice 3. Let F'/F be a finite Galois extension of number fields. Let P be a prime
of O and v € S(F') the associated finite place. Show that the image of the maps G, —
Grp — Gal(F'/F) are exactly the decomposition groups at the primes of F' above P, the
image of I, being the associated inertia groups.

Exercise 4. Let p : Gg,s — GL,(C) be an Artin representation and M = Q(p). Show
that p ¢ S splits completely in M if, and only if, trace(p(Frob,)) =n

Exercise 5. Using Theorem 1.10, show that there is no cyclic extension of degree 3 of
Q(i), Q(v2) and Q(v/—2) which is unramified outside the primes above 2 and co. Deduce
that there is no surjective Galois representation® Go o2y — GL2(Z/2Z).

FExercise 6. Using corollary 1.11, show that recg induces an isomorphism Hpesf Ly —

G . Determine Froby for € ¢ S via this isomorphism. Let QCyCl C Q be the field generated
by all the roots of unity of order n such that n has all its prime divisors in S, show that the
natural surjection GQ, — Gal(@cyd/@) is an isomorphism (Kronecker-Weber theorem,).

Ezercise 7. (Burnside basis theorem) If G is a profinite group and p is a prime, denote
by G(p) the mazximal pro-p-quotient of G, i.e. the projective limit of the G/H with H open
of index a power of p. Show that G(p) is is topologically finitely generated if, and only if,
dimg, Hom(G,Z/pZ) < oo, in which case this latter dimension is the minimal number of
topological generators of G(p). Deduce that Grs(p) is topologically finitely generated, and
that for p odd, G oo p}(P) = Zp.

(Hint: Reduce first to the case where G = G(p) is a pro-p-group, and even to the case
where G is a finite p-group. Show then by induction on |G| that the mazimal subgroups of
G are normal and of index p.)

Exercise 8. Let S = S(F), US(F)s, r1 = |S(F)r| and 2ry = |S(F)c|. Show that
G%]?S(p) >~ 7oy, X A for some finite abelian p-group A and where r > r2+1. Show that r =1
if = Q orif Fis a quadratic real field, and that r = 2 if F' is an imaginary quadratic
field. It is believed that r = ro + 1 in all cases (Leopold’s conjecture).

Open problem (to the author). What is the pro-order of Frob, € Gq.g, forv ¢ S ?¢
Easy problem : assume that oo € S, show that coo € G5 has order 2 iff |S| > 2. Let us
mention here the following result of Clozel and the author : if |S| > 3 and S D {00, p} then
ty G, — Gq,s 1s injective.

2. Geometric Galois representations

Artin representations of G are always defined over some number fields, hence
give rise to a collection of p-adic Galois representations for all primes p. We re-
view now some other important examples of p-adic Galois representations that are
associated to algebraic varieties over F'.

3A theorem of Tate ensures that there is no irreducible Galois representation G 00,2y —
GLy(Fam) for all m > 1. It is believed that for any n > 1 and any prime p, there is only finitely
many Galois representations G o,p} — GL,,(F,). This would follow from variants to GL,, of
Serre’s conjecture.



2.1. Tate modules. An especially nice class are the ones arising from Tate
modules of commutative algebraic groups over F', that we briefly review now.

Let A be an abelian group. If N > 1 is an integer, we denote by A[N] the
subgroup of elements a € A such that Na = 0. If N and M are co-prime, Bezout’s
theorem ensures that A[MN] = A[M] & A[N]. If p is a prime, we denote by 7,,(A)
the projective limit of the A[p"] for n > 1 and for the transition maps given by
multiplication by p : A[p"*] — A[p"], and V,(A) = T,(A)[1/p]. The abelian group
T,(A) is a Z,-module in a natural way, called the p-adic Tate module of A.

In the following examples, there will be some integer h > 1 such that |A[p"]| =
p™ for all n > 1. It is an exercise on finite abelian groups to check that in this case,

vn>1, Ap"| ~ (Z/p"Z)", T,(A)~Z! and T,(A)/p"T,(A) = A]p".

Furthermore, A will be a discrete G p-module, i.e. a Z|Gr|-module such that the sta-
bilizer in G of any a € A is an open subgroup of G . This implies that 7,,(A) defines
a Galois representation Gp — GLy(Z,), its reduction modulo p beeing Afp] ~ F.
Similarily, if A[N] ~ (Z/NZ)" it defines a Galois representation Gr — GL,(Z/NZ)
(the N-torsion representation associated to A). The residual representation of V,(A)
is the semi-simplification of A[p).

2.2. The cyclotomic character. Apply this to the multiplicative group
X

A= G, (F)=F,
in which case we also set uy(F) = A[N]. Of course, |ux(F)| = N if N € F* and

pp(F) = 0 if pF' = 0. Thus T,(A) = 0 if pF' = 0, T,(A) =~ Z, otherwise, and

un(F) ~ Z/NZ if N € F*. Using the obvious action of Gr on A, we obtain for
p € F* a continous character

X : Gp — Auty, (T,(A) = Z,
called the p-adic cyclotomic character of Gp. For N € F*, the mod N cyclotomic

character is the character Gp — (Z/NZ)* defined by pn(F). By construction,
F(X) = Uy F(jue (F)) © F.
When F' =R, y is the non-trivial character of Ggr = Z/2Z.

When F' is a finite field of characteristic ¢ # p, this Galois representation of
Gr = Z is the one mapping Frobp to |F|™' € Zy by definition of Frobp.

When F is a finite extension of Q, and (N, ¢) = 1, then X~ —1 is separable over
kp so A[N] = un(F) C F™, and y factors through a character of Gr/Ir = Gy,
whenever p € F*. As the reduction “mod 7" induces an bijection jun(F) = pun(kr)
for N € F*, we see that this latter character s nothing but the p-adic cyclotomic
character of G,.. The case ¢ = p is subtler; a useful way to describe x is in terms of
the reciprocity map: yorecp : F* — @ is the composition of the norm F* — Qj
with the character sending p to 1 and which is the identity on Z (see the exercises).

When F is a number field, the bijections uy(F) = py(F,) ensure that for each
v € S(F), X|ap, is the p-adic cyclotomic character of Gr,. In particular, x is the
unique character Gp — Z) unramified outside (the primes dividing) p, o0, such that
for a finite place v not dividing p, oo, we have x(Frob,) = |kg, |~ € Z,. A simple
but interesting application of this is the following classical result.
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PROPOSITION 2.3. (Gauss) For each integer N > 1, the N-th cyclotomic poly-
nomial is irreducible over Q.

Proof — Indeed, xn : Gg — (Z/NZ)* is unramified outside the primes ¢ dividing
N and oo, and for such an ¢, xy(Froby) = ¢~! € (Z/NZ)*. As those elements
generate (Z/NZ)* when ¢ varies, xy is surjective, thus Q(xy) = Q(e*™/V) has
degree ¢(N) over Q, and the result follows. O

DEFINITION 2.4. (Tate twist) If V is a Galois representation of Gp on a Q,-
vectorspace, and if i € Z, we denote by V(i) the representation V twisted by the
character .

2.5. The Tate module of an elliptic curve. Assume now that F is an elliptic
curve over I, that is a projective, geometrically connected, and smooth, algebraic
curve over F' of genus 1, equipped with a rational point O € E(F). As is well-known,
E may be embedded as a non-singular cubic of P% in such a way that the projective
line at infinity meets O as a triple (flex) point. The affine part of E has then a
Weierstrass equation of the form

(2.1) v: + azy + asy = 23 + asx? + aur + ag, a; € F.

The non-singularity of this plane curve is expressed in the non-vanishing of its dis-
criminant, which some explicit element*A € Z[ay, ..., as]. Conversely, any plane
curve defined by such an equation with non-zero A defines an elliptic curve over F,
by taking the closure in PZ. The Weierstrass equation is non-unique however.?

Recall that the relation “P+Q+ R = O if, and only if, there is a projective line in
P? whose intersection with E is P, Q, R (with multiplicities)’ defines an abelian group
structure on A = E(F) with identity element O. This abelian group is a discrete
Gr-module. The addition in A actually comes from an F-morphism F x E — FE|
hence so does the multiplication by N, often denoted by [N] : E — E, for any
integer N > 1. It can be shown that [N] is finite of degree N2, étale if N € F*. We

shall content ourselves with the following proposition here.

PROPOSITION 2.6. A[N]| ~ (Z/NZ)* if N € F* and T,(A) ~ 72 if p € F*.

Proof —  We only have to show the assertion on A[N]. Remark first that if
F' is algebraically closed, and if F' — F’ is a field embedding, then E(F)[N] is
finite if and only if E(F’)[N] is finite, in which case they are equal, as E(F)[N]
is (the F-points of) the closed F-subvariety [N]~'({O}) of E. When F = C the
abelian group FE(C) is a compact complex torus C/A by Weierstrass theory, so
A[N] ~ +A/A ~ (Z/NZ)*. By the remark above, this concludes the proof when
I is any field that embeds into C, and in particular when F' is finitely generated

4Following Silverman, A = —b3bg — 8b3 — 27b2 + 9babsbs where by = a? + 4ag, by = 2a4 + ajas,
be = a3 + 4ag and bg = alag + 4agas — ajazas + aza3 — a3. The important property of A is

that the Weierstrass plane curve, viewed as a scheme over Z[aq,...,ag], is smooth exactly over
Zlay,...,a6)[A7]. When a; = a3 = az = 0, to which we can always reduce when 6 is invertible,
we essentially have the usual formula A = —16(4a3 + 27a3).

5Using the Riemann-Roch theorem, we may show that it is unique up to changes of coordinates
of the form z = u?2’ + r and y = w3y’ + su?a’ +t where u,r,s,t € F and u # 0, see Silverman’s
book Chap. III.
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over Q. For a general F' of characteristic 0, remark that E is always defined over its
finitely generated subfield Fy = Frac(Zlay, . .., ag]), hence we are done by applying
the remark again (this method is called "Lefschetz principle"). Let us postpone the
case where F' has positive characteristic. O

Assume that F' is complete for some discrete valuation v, let O be its valuation
ring and k its residue field. An integral Weierstrass equation for F is an equation as
in (2.1) such that a; € O for each i. We say that E has good reduction over F' if, up
to a projective linear change of coordinates in P%, F possesses an integral Weierstrass
equation with A € O*. We assume now that this is the case, and we fix such an
integral Weierstrass equation. Denote by E the elliptic curve® over k obtained by
reducing this equation modulo the maximal ideal of ©. The natural reduction map
P2(0) = P%(F) — P2(k) induces a natural reduction map E(F) — E(k).

PROPOSITION 2.7. (Good reduction case) This map is a surjective group homo-
morphism. Denote by Ey(F') its kernel and by mp the mazimal ideal of F'. The map
(z,y) — x/y induces a group isomorphism Eo(F) = myp if we endow this last set
with the formal group law defined by E.

In particular, for each integer N > 1 in O*, [N] : Eo(F) — Ey(F) is bijective
and the reduction map induces an isomorphism E(F)[N] = E(k)[N].

Proof — As A € O*, the integral Weierstrass model of F is smooth over O, hence
E(F) = E(O) — E(k) is surjective by Hensel’s lemma. The reduction map is a
group homomorphism by definition of the group law, as we may always re-scale any
line in P? so that its coefficients are in O and one of them in O*.

Consider now the change of projective linear coordinates on P% sending O to
(0,0) € A? given by (z,w) = (—x/y, 1/y); the Weierstrass equation becomes

w = 2%+ a1 2w + ax2?w + azw? + agzw® + agw’.
It follows that if z € mp then there is one, and only one, w € F such that (z,w) €
Ey(F), in which case w € mp as well, namely
w=2(14+ayz+ (a3 +a)z> +--+) € Z[ay, . .., a6][[2]].

This shows that the coordinate z : Ey(F) — mp is bijective. The group law is easily
“computed” in terms of the coordinate z: if R is the polynomial ring Z[a4, ..., ag),
there exists an element

F(u,v) € R[[u,v]], F(u,v) =u+ v mod (u,v)?

such that whenever P, = (z;,w;) € Eo(F), i = 1,2,3 such that P, + P, = P,
then z3 = F(z1,22). It follows that for each integer N > 1, there is an element
Fn € R[[2]], Fn(2) = Nz mod (z?), such that [N]: Eo(F) — Eo(F) is 2 — Fn(z2).
(See Silverman’s book Chap. IV §1 for some details about the computations abovem
as well as Fargues lectures for wonderful things about formal groups.)

Assume now that N € O*. The subset O*z + 220][[z]] C O|[z]] being a group
for the composition of power series, it follows that [N] is bijective on Ey(F). In
particular, F(F)[N] — E(k)[N] is injective. If P € FE(k)[N], we have seen that

6This curve actually is well-defined as the minimal Weierstrass equation is unique of to changes
of coordinates with (u,7,s,t) € O% and u € OF.
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there is some @ € E(F) that lifts P. So [N]Q € Ey(F'), hence has the form [N]R
for some R € Ey(F), hence Q — R € Ey(F)[N] lifts P. O

Proof —  (End of proof of proposition 2.6). When F' is algebraically closed of
characteristic p > 0, we may view F as the residue field of the Witt vectors W (F') of
F, and we may lift (anyhow) a Weierstrass equation to W (F'). For instance, if F' is
the algebraic closure of a finite field of characteristic p, then W (F') is isomorphic to
the p-adic completion of Ogy:. Note that the discriminant of this integral Weierstrass
equation is non-zero mod p, hence in W (F')*.

Changing the notations, assume now that F' is complete for a discrete valuation
v : F* — Z such that v(p) = 1, with algebraically closed residue field k, and
that £ has good reduction over F, with residue curve any given elliptic curve E

over k. By the characteristic 0 case, there is a finite extension L of F' such that
E(L)[N] = E(F)[N] =~ (Z/NZ)?. Proposition 2.7 ensures that the reduction map

E(L)[N] — E(k)[N]

is an isomorphism, and we are done. O

We usually set T,(E) := T,(A). For p € F*, the Galois representation
pep: Gr — Auty, (T,(E)) ~ GLy(Z))

is usually extremely interesting, in the sense that it tells a lot about the elliptic
curve E.7

For instance if F' is finite with ¢ elements and p is prime to ¢, then a theorem of
Welil asserts that

|E(F)| = ¢+ 1 — trace(pg,,(Frobz')) and det(pg,(Frobz!)) = ¢.

A theorem of Hasse says that |trace(pg,(Froby'))| < 2,/g. For a general F, the
Weil-pairing shows that det(pg,) is the p-adic cyclotomic character of Gp.

Let F' be a finite extension of QQ;. When E has good reduction over F', Prop. 2.7
shows that E(F)[N] C E(F™) whenever N € O%, in which case the reduction mod
7 induces a group isomorphism E(F)[N] = E(kg)[N]. In particular, if p € O}
and E has good reduction over F, then pg, is unramified and factors through a
representation of Gy, which is exactly pg,,.

If F — F’is any field embedding and N € F*, then E(F)[N] = E(F')[N] so
it is clear that T,(E)\,, = Tp(E xXp F') for any p. As a consequence, the analysis
above shows that when F' is a number field, the datum of pg, is exactly the same
as the one of the collection of |E(kp,)| for almost all v € S(F), as expressed by the
following statement.

THEOREM 2.8. Let S be the finite set of primes v of F such that either v €
Sp(F) U Sx(F), or E has bad reduction at F,.

The Galois representation pg, : Gr — GL2(Q,) is semi-simple, unramified
outside S, and for all v ¢ S we have trace(pg,,(Frob, ")) = |kp,| + 1 — |E(kg,)|. It

"Not always, however, for instance it does not say anything if F' is algebraically closed. It is
typically interesting if F' is of finite type over its prime subfield.
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is the unique Galois representation with these properties. It is irreducible if E has
no complex multiplication.

This follows from the analysis above and Prop.1.9, except the fact that V,(E)
is a semi-simple, irreducible is the non-CM case, G g-representation. This actually
comes from other ideas, and is rather specific to number fields. Briefly, if £ is CM
then V), is easily seen to be semi-simple. Assume £ is not CM. It is enough to
check that T,(E) has only finitely many G p-stable Z,-lattices up to homothety. It
is a general fact that for each such lattice A there exists an elliptic curve E’ over
F and an isogeny E' — E such that A is the image of T,(E’) via this isogeny.
It turns out that F and E’ have good reduction at the same finite places (this
can be read off from V,(E) = V,(E’), by the Neron-Ogg-Shafarevic criterion). But
up to isomorphisms, there are only finitely many elliptic curves over F' with good
reduction outside a fixed finite set S: this is Shafarevic’s theorem see e.g. Serre’s
Abelian (-adic representations Chap. IV 1.4.



