
Geometric and modular Galois rep-
resentations

1. Galois groups and Galois representations

1.1. First definitions. Let F be a field, F a separable algebraic closure of F ,
and GF := Gal(F/F ) the absolute Galois group of F , i.e. the group of F -linear
field automorphisms of F .

For each finite Galois extension K of F inside F , a basic fact from field theory is
that the restriction induces a surjective group homomorphism GF → Gal(K/F ), so
that GF is isomorphic to the projective limit of the Gal(K/F ) where K runs over
all the extensions as above. In particular, GF is a compact, totally disconnected,
topological group for the product (or “Krull”) topology: the subgroups of the form
Gal(F/K) with F ⊂ K ⊂ F a finite extension are open, and form a fundamental
system of neighborhoods of 1 ∈ GF .

Recall Galois theory: the map K ⊂ F 7→ Gal(F/K) ⊂ GF is a bijection between
(possibly infinite) extensions of F inside F and closed subgroups of GF , the inverse
bijection being H 7→ F

H .

A Galois representation of F is a continuous representation

ρ : GF → GLn(A)

where A is some topological, separated, commutative ring.1

The normal subgroup Ker ρ = ρ−1({1}) is closed, hence of the form Gal(F/F (ρ))
for a unique Galois extension F (ρ) of F inside F . We sometimes call F (ρ) the
extension of F cut out by ρ, its Galois group Gal(F (ρ)/F ) ' ρ(GF ) is a closed
subgroup of GLn(A). From this perspective, finding A-valued Galois representations
first amounts to finding (possibly infinite) Galois extensions K/F whose Galois group
may be realized as a closed subgroup of GLn(A). When A is discrete, note that Ker ρ
is an open subgroup, so F (ρ) is a finite extension of F .

We will typically consider the following kind of rings A:

(i) Finite fields, or more generally, finite rings, like Fq (the finite field with
q elements) or (Z/p3Z)[X, Y ]/(X4, (X + Y )2, Y 7). We shall always equip
them with the discrete topology.

(ii) A = C the field of complex numbers, equipped with its usual topology, in
which case we talk about Artin representation. As there exists a neighbor-
hood of 1 ∈ GLn(C) containing no non-trivial subgroup (see the exercices),
an Artin representation also factors through the Galois group of a finite
Galois extension of F .

(iii) A is a finite extension of Qp, or more generally a finite dimensional Qp-
algebra. In this case, A is endowed with its natural topology of normed
vector space over Qp, for which it is a topological Qp-algebra. When A is a
field, we talk about p-adic Galois representations.

1We usually equip Mn(A)×A ' An2+1 with the direct product topology and view GLn(A) as
the closed subset {(x, y),det(x)y = 1}.
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(iv) Affinoid algebras over Qp. These are the natural coefficients when consid-
ering families of representations with coefficients of type (iii), which are
exactly the zero dimensional affinoid algebras. We will say more about
them in due time.

(v) Any other interesting topological ring !

For our purposes in this course, we will be mostly interested in p-adic Galois
representation GF → GLn(L) where L is a finite extension of Qp, and in families
of such representations. In the remaining part of this paragraph, we introduce the
first natural invariants of such representations : the residual representation.

If L is a finite extension of Qp, we denote by OL its ring of p-adic integers, by πL

a uniformizer of OL, and by kL = OL/(πL). In the following statement, GF could
be replaced by any profinite group.

Lemma 1.2. Let L be a finite extension of Qp and ρ : GF → GLn(L) a Galois
representation. There are OL-lattices Λ ⊂ Ln which are stable by GF . The semi-
simplification of the representation of GF on Λ/πLΛ ' kn

L does not depend on the
choice of Λ.

Recall that the semi-simplification of a representation of a group G on a finite
dimensional vector space V over a field k is the direct sum of all the Jordan-Hölder
constituents of the k[G]-module V . We usually denote it by V ss. In this definition, we
take multiplicities into account: dimk V = dimk V ss. The representation V is semi-
simple iff V ' V ss as k[G]-modules. Concretely, if (Vi) is an increasing filtration of
sub-representations of V such that Vi+1/Vi is irreducible, then V ss ' ⊕iVi+1/Vi.

Proof — As GF is compact and ρ is continuous, G = ρ(GF ) is a compact subgroup
of GLn(L). Let Λ be any OL-lattice inside Ln. Then {g ∈ GLn(L), g(Λ) = Λ} is
an open subgroup of GLn(L), hence its intersection H with G is an open subgroup
of G. In particular, Λ′ =

∑
g∈G g(Λ) is a finite sum over a set of representative of

G/H, hence is a lattice as OL is a DVR, G-stable by construction.

Note that if Λ is a G-stable lattice, so is Λ′ = πi
LΛ for i ∈ Z, and the multipli-

cation by πi
L induces a kL[G]-isomorphism Λ/πLΛ

∼→ Λ′/πLΛ′. Let now Λ1 and Λ2

be two G-stable lattices. Then so are the Li := Λ1 + πi
LΛ2 for i ∈ Z. Note that

Li = Λ1 for i >> 0, Li = πi
LΛ2 for −i >> 0, and πLLi ⊂ Li+1 ⊂ Li for each i ∈ Z. It

follows that we may assume that πLΛ1 ⊂ Λ2 ⊂ Λ1. We have an exact sequence of
k[G]-modules

0 → Λ2/πLΛ1 → Λ1/πLΛ1 → Λ1/Λ2 → 0.

On the other hand, Λ2 ⊂ Λ1 ⊂ π−1
L Λ2, so the kL[G]-module Λ2/πLΛ2 ' π−1

L Λ2/Λ2

is as well an extension of π−1
L Λ2/Λ1 ' Λ2/πLΛ1 by Λ1/Λ2. �

Definition 1.3. Let L be a finite extension of Qp and ρ : GF → GLn(L) a Galois
representation. We denote by ρ̄ : GF → GLn(kL) the semi-simple representation
defined by the previous lemma. It is called the residual representation of ρ.

An alternative proof for the second-part of the lemma is to appeal to a classical
result of Brauer-Nesbitt : two finite-dimensional k-representations V1 and V2 of a
group G have isomorphic semi-simplifications if and only if for all g ∈ G we have
det(1− tg|V1) = det(1− tg|V2) ∈ k[t]:
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Lemma 1.4. Let k be a field, R a k-algebra (unital, associative, but non nec-
essarily commutative), and let M1,. . . ,Mr be finitely many non-isomorphic simple
R-modules which are finite dimensional over k. There is an element ei ∈ R such
that ei|Mi

= idMi
and ei(Mj) = 0 for j 6= i.

In particular, if M and N are two semi-simple R-modules of finite dimension
over k, then M ' N as R-module if and only if det(1 − ta|M) = det(1 − ta|N) for
all a ∈ R (Brauer-Nesbitt). When k has characteristic 0, or when d = dim(M) =
dim(N) satisfies d! ∈ k×, it is enough to assume that trace(a|M) = trace(a|N) for
all a ∈ R.

Proof — We may replace R by its image in Endk(⊕iMi), so we may assume
that R is finite dimensional over k, and even semi-simple as it has a faithful semi-
simple module. Wedderburn-Artin theory shows that R '

∏
i Mdi

(Dopp
i ) where

Di = EndR(Mi) is a division k-algebra (Schur’s lemma) and di = dimDi
(Mi). The

diagonal element (0, .., 1, .., 0) with 1 at place i and 0 elsewhere in this composition
does the trick. To check the second statement, let Mi be the simple constituents of
M ⊕N and denote by mi and ni the respective multiplicity of Mi in M and N . If
ei ∈ A is as in the first part, then the equality of characteristic polynomials, or of
traces in the second case, applied to ei shows that ni = mi. �

We shall be mostly interested in GQ, or in GF for a number field F . To give
interesting examples of Galois representations, it is necessary to review a bit the
structure of these Galois groups.

Exercise 1. Let |||.||| be a triple norm on Mn(C). Show that U = {M, |||M − 1||| < 1}
is an open subset of GLn(C) and that the unique subgroup of GLn(C) inside U is {1}.
(Observe first that if M ∈ U , each eigenvalue λ of M satisfies |λ− 1| < 1.)

Exercise 2. Let ρ : GF → GLn(Qp) be a continuous representation. Show that ρ(GF ) ⊂
GLn(L) for some finite extension L of Qp inside Qp (use Baire’s theorem).

Exercise 3. Let G ⊂ GLn(Zp) be a subgroup. Show that G has a unique stable lattice
in Qn

p (up to homotheties) if, and only if, G acts irreducibly on Fn
p .

Exercise 4. Let G ⊂ GL2(Zp) be the subgroup of matrices which are upper triangular
modulo p. Show that up to homotheties, G has exactly two stable lattices in Q2

p, and that
the two residual representations are non isomorphic. Generalize to dimension n.

Exercise 5∗. Show that G ⊂ GLn(Qp) has only finitely many stable lattices in Qn
p (up

to homotheties) if, and only if, G acts irreducibly on Qn
p .

Open problem (to the author). Let ρn : GL2(Zp) → GLn+1(Qp) be the n-th symmetric
power of the standard representation ρ1, what is the number `(p, n) of homothety classes
of Zp-lattices of Qn+1

p which are stable by GL2(Zp) ? Much easier subproblem : show that
`(p, n) = 1 if and only if n < p, and compute `(p, p).

1.5. The local-global structure of the Galois group of a number field.
When F is a finite field with q elements, GF ' Ẑ, a canonical topological generator of
GF being the arithmetic Frobenius element frobF : x 7→ xq. The geometric Frobenius
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is by definition the inverse of the arithmetic Frobenius, and will be denoted by
FrobF ∈ GF .

When F is a finite extension of Qp, the structure of GF is rather well-known.
There is a natural filtation of GF by closed normal subgroups, called the ramification
filtration (see Serre’s Corps locaux, or maybe Berger and Fargues lectures). The first
subgroup of this filtration is the inertia group

IF = Gal(F/F ur)

where F ur ⊂ F is the maximal unramified extension of F . Explicitely, F ur is the
abelian extension generated by all roots of unity of order prime to p. As is well
known, the natural map GF /IF → Gal(kF /kF ) is an isomorphism, so we shall view
FrobkF

as an element of GF /IF . The subgroup IF has a unique pro-p-Sylow subgroup
PF ⊂ IF called the wild inertia subgroup, and IF /PF '

∏
` 6=p Z`. Explicitely, IF /PF

is the Galois group of the extension F t of F ur generated by the π
1/n
F where n is prime

to p (this does not depend on the choice of πF ). The subgroup PF is normal in GF

and the action by conjugation of FrobkF
on IF /PF is the multiplication by q, where

q = |kF |. Local class field theory provides a canonical reciprocity map

recF : F× → Gab
F

sending πF to the geometric Frobenius in GF /IF and sending O×
F isomorphically

onto the image of IF in Gab
F . Thus the reciprocity map induces an isomorphism

F̂× → Gab
F , where F̂× is the completion of F× with respect to all the open subgroups

of finite index. For instance, Q̂×
p ' Ẑ × Z×

p ' Gab
Qp

. For other properties of the
reciprocity map, see Serre’s Corps locaux or Neukirch’s Class field theory.

For sake of completeness, recall that as C is algebraically closed we have GC =
{1} and GR = Z/2Z. We convene that C/R is ramified and set IR = GR. In these
cases, we define

recR : R× → Gab
R = GR

as the morphism with kernel R×
>0, and recC is the trivial morphism C∗ → GC.

When F is a number field, the structure of GF is not so well known. Re-
call that the Kronecker-Weber theorem asserts that the naural surjection GQ →
Gal(Qcycl/Q) = Ẑ× induces an isomorphism Gab

Q ' Ẑ×. Here are two famous open
problems:

Conjecture 1.6. (Shafarevic) The closed subgroup of GQ generated by the com-
mutators is a free pro-finite group over countably many generators.

(Galois inverse problem) Any finite group is a quotient of GQ.

In some sense, these conjectures say that GQ is not so interesting as an abstract
group. On the other hand, GQ has an extra "local-global" structure that usually
carries a deep arithmetic information.

Denote by S(F ) the set of places (or equivalence classes of valuations) of the
number field F . If S is a subset of S(F ) we shall write Sf for the subset of finite
places in F , S∞ for the subset of archimedean places, and we shall use various other
suggestive notations like Sp ⊂ S for the subset of places above the prime p, or SR ⊂ S
for the subset of real places in S. For each v ∈ S(F ), denote by Fv the completion
of F with respect to v. Let ιv : F → Fv be a field embedding extending F → Fv.
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It defines a continuous group homomorphism ι∗v : GFv → GF , the conjugacy class
of which in GF does not depend on the choice of ιv. The local-global structure
alluded above is this collection of conjugacy classes of morphisms GFv → GF for all
v ∈ S(F ).

If S ⊂ S(F ) we denote by FS ⊂ F the maximal algebraic extension unramified
outside S, i.e. such that ιv(FS) ⊂ F ur

v for each v /∈ S and each ιv. Set

GF,S = Gal(FS/F ).

By definition, GF,S is the quotient of GF by the closed normal subgroup generated
by the IFv for all v /∈ S. For each v /∈ S, the maps ι∗v : GFv → GF,S factor through
GkFv

, hence GF,S contains a canonical conjugacy class:

Frobv :=
⋃
ιv

ι∗v(Frobkv) ⊂ GF,S.

We sometimes view Frobv as an element of GF,S well defined up to conjugacy. For
each v ∈ SR, the maps ι∗v : GR = GFv → GF,S send the order two element of GR to
a conjugacy class of complex conjugations in GF,S (even in GF ) denoted cv.

We say that a Galois representation ρ : GF → GLn(A) is unramified outside S if
ρ(IFv) = 1 for each v /∈ S, or which is the same if it factors through GF,S. We also say
that ρ is unramified outside some integer N (resp. N∞) if it is unramified outside
the set S of places of F dividing N (resp. N or ∞). In this case, it makes notably
sense to consider for each v /∈ S the characteristic polynomial of Frobv ∈ GF,S.

From now on, S will always denote a finite subset of S(F ). There are several
wonderful questions and conjectures about the groups GF,S.

Conjecture 1.7. (Shafarevic) Is GF,S topologically finitely generated ?

("finite" Fontaine-Mazur) Any Galois representation ρ : GQ,S → GLn(Qp) such
that ρ(IQp) is finite has finite image.

The general conjecture of Fontaine-Mazur will be dicussed a bit later. Here are
some well-known but important positive results on the GF,S.

Theorem 1.8. (Minkowski) GQ,{∞} = {1}.
(Hermite) For each number field F and any prime p, Hom(GF,S, Fp) is a finite

dimensional Fp-vector space.

(Cebotarev) The union of the conjugacy classes of Frobv for all v /∈ S is dense
in GF,S.

Of course Hom means “continuous group homomorphisms” here. The first part
of the theorem says that for each number field F 6= Q, there is at least one prime
ramified in F . The second part of the theorem follows from Hermite’s classical result
in geometry of numbers that for each integer n ≥ 1, there is only finitely many
number fields of degree n which are unramified outside S. Note that Cebotarev
theorem also holds if we restricts to a density one subset of primes v ∈ S(F )\S.

Proposition 1.9. Let L/Qp be a finite extension and let ρ1 and ρ2 be two semi-
simple p-adic Galois representations GF,S → GLn(L). Then ρ1 ' ρ2 if, and only if,
for each v /∈ S we have trace(ρ1(Frobv)) = trace(ρ2(Frobv)).
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We leave as an exercise to prove a similar statement if L is a finite field (if
p = char(L) > 0 and p ≤ n, use the full characteristic polynomial).

Proof — Assume that the trace equality holds for all v /∈ S. So the Ti = trace(ρi) :
GF,S → L are two continuous functions that coincide over the dense subset of
conjugacy classes of Frobv for v /∈ S, thus they are equal. We conclude by lemma 1.4
applied to k = L, R = L[GF,S], M = ρ1 and N = ρ2. �

Let us end this paragraph by describing the abelianization of GF when F is a
number field. Recall that the idèles A×

F of F is the subgroup of
∏

v∈S(F ) F×
v whose

elements (xv) satisfy xv ∈ O×
Fv

for almost all v (i.e. all but maybe finitely many). It
is a locally compact topological space for the product topology. We have a diagonal
embedding F× → A×

F with discrete image, as well as closed embeddings F×
v →

A×
F , x 7→ (1, . . . , 1, x, 1, . . . ) (at place v) for each v. As Galois number fields are

unramified outside finitely many primes, the collection of maps recFv : F×
v → Gab

Fv
,

together with the ι∗v, define a continuous map

recF : A×
F −→ Gab

F

called the global reciprocity map (as the target is abelian, the conjugacy class of
morphisms ι∗v is a well-defined and unique morphism for each v). The main theo-
rem of global class field theory shows that recF is surjective and its kernel is the
closed subgroup generated by F× and the connected components of 1 in F×

v for each
archimedean v ∈ S(F ). In particular, an exercise on idèles (do it!) shows that:

Theorem 1.10. (Global class field theory) recF induces an exact sequence

1 −→ UF\({±1}S(F )R ×
∏

v∈S(F )f

O×
Fv

) −→ Gab
F −→ Cl(OF ) −→ 1

where UF is the closure of O×
F inside the left hand side, diagonally embedded2, and

where Cl(OF ) is the ideal class group of OF .

Corollary 1.11. Gab
F,S sits in a similar sequence with S(F ) replaced by S ev-

erywhere.

For many results about local and global Galois groups, see Serre’s Corps lo-
caux, Neukirch’s Class field theory and the book Cohomology of number fields, by
Neukirch, Schmidt and Wingberg. Class field theory gives a description of all the
1-dimensional Galois representations. (There are however still two unknown: the po-
sition of UF inside the idèles ("Leopold’s conjecture") and the finite group Cl(OF ).)
Generalization of this picture to the higher dimensional Galois representations is
one of the main aim of algebraic number theory, mostly contained in the theory of
automorphic forms and in the Langlands program in its various aspects.

Exercise 1. Let F → F ′ be a field embedding. Let i, j : F → F ′ be two extensions of
this embedding and i∗, j∗ : GF ′ → GF be the associated group homomorphisms. Show that
there exists some h ∈ GF such that hi∗(g)h−1 = j∗(g) for all g ∈ GF ′ .

Exercise 2. Show that the algebraic numbers over Q are dense in Qp for the p-adic
topology. Deduce that the morphisms GFv → GF are injective.

2For v ∈ S(F )R, the map F×
v → {±1} we are thinking about is the one giving the sign of an

element.
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Exercice 3. Let F ′/F be a finite Galois extension of number fields. Let P be a prime
of OF and v ∈ S(F ) the associated finite place. Show that the image of the maps GFv →
GF → Gal(F ′/F ) are exactly the decomposition groups at the primes of F ′ above P , the
image of IFv being the associated inertia groups.

Exercise 4. Let ρ : GQ,S → GLn(C) be an Artin representation and M = Q(ρ). Show
that p /∈ S splits completely in M if, and only if, trace(ρ(Frobp)) = n.

Exercise 5. Using Theorem 1.10, show that there is no cyclic extension of degree 3 of
Q(i), Q(

√
2) and Q(

√
−2) which is unramified outside the primes above 2 and ∞. Deduce

that there is no surjective Galois representation3 GQ,{∞,2} → GL2(Z/2Z).

Exercise 6. Using corollary 1.11, show that recQ induces an isomorphism
∏

p∈Sf
Z∗p →

Gab
Q,S. Determine Frob` for ` /∈ S via this isomorphism. Let Qcycl

S ⊂ Q be the field generated
by all the roots of unity of order n such that n has all its prime divisors in S, show that the
natural surjection Gab

Q,S → Gal(Qcycl
S /Q) is an isomorphism (Kronecker-Weber theorem).

Exercise 7. (Burnside basis theorem) If G is a profinite group and p is a prime, denote
by G(p) the maximal pro-p-quotient of G, i.e. the projective limit of the G/H with H open
of index a power of p. Show that G(p) is is topologically finitely generated if, and only if,
dimFp Hom(G, Z/pZ) < ∞, in which case this latter dimension is the minimal number of
topological generators of G(p). Deduce that GF,S(p) is topologically finitely generated, and
that for p odd, GQ,{∞,p}(p) ' Zp.

(Hint: Reduce first to the case where G = G(p) is a pro-p-group, and even to the case
where G is a finite p-group. Show then by induction on |G| that the maximal subgroups of
G are normal and of index p.)

Exercise 8. Let S = S(F )p ∪ S(F )∞, r1 = |S(F )R| and 2r2 = |S(F )C|. Show that
Gab

F,S(p) ' Zr
p×∆ for some finite abelian p-group ∆ and where r ≥ r2 +1. Show that r = 1

if F = Q or if F is a quadratic real field, and that r = 2 if F is an imaginary quadratic
field. It is believed that r = r2 + 1 in all cases (Leopold’s conjecture).

Open problem (to the author). What is the pro-order of Frobv ∈ GQ,S, for v /∈ S ?
Easy problem : assume that ∞ ∈ S, show that c∞ ∈ GQ,S has order 2 iff |S| ≥ 2. Let us
mention here the following result of Clozel and the author : if |S| ≥ 3 and S ⊃ {∞, p} then
ι∗p : GQp → GQ,S is injective.

2. Geometric Galois representations

Artin representations of GF are always defined over some number fields, hence
give rise to a collection of p-adic Galois representations for all primes p. We re-
view now some other important examples of p-adic Galois representations that are
associated to algebraic varieties over F .

3A theorem of Tate ensures that there is no irreducible Galois representation GQ,{∞,2} →
GL2(F2m) for all m ≥ 1. It is believed that for any n ≥ 1 and any prime p, there is only finitely
many Galois representations GQ,{∞,p} → GLn(Fp). This would follow from variants to GLn of
Serre’s conjecture.
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2.1. Tate modules. An especially nice class are the ones arising from Tate
modules of commutative algebraic groups over F , that we briefly review now.

Let A be an abelian group. If N ≥ 1 is an integer, we denote by A[N ] the
subgroup of elements a ∈ A such that Na = 0. If N and M are co-prime, Bezout’s
theorem ensures that A[MN ] = A[M ]⊕ A[N ]. If p is a prime, we denote by Tp(A)
the projective limit of the A[pn] for n ≥ 1 and for the transition maps given by
multiplication by p : A[pn+1] → A[pn], and Vp(A) = Tp(A)[1/p]. The abelian group
Tp(A) is a Zp-module in a natural way, called the p-adic Tate module of A.

In the following examples, there will be some integer h ≥ 1 such that |A[pn]| =
pnh for all n ≥ 1. It is an exercise on finite abelian groups to check that in this case,

∀n ≥ 1, A[pn] ' (Z/pnZ)h, Tp(A) ' Zh
p , and Tp(A)/pnTp(A)

∼→ A[pn].

Furthermore, A will be a discrete GF -module, i.e. a Z[GF ]-module such that the sta-
bilizer in GF of any a ∈ A is an open subgroup of GF . This implies that Tp(A) defines
a Galois representation GF → GLh(Zp), its reduction modulo p beeing A[p] ' Fh

p .
Similarily, if A[N ] ' (Z/NZ)h it defines a Galois representation GF → GLh(Z/NZ)
(the N-torsion representation associated to A). The residual representation of Vp(A)
is the semi-simplification of A[p].

2.2. The cyclotomic character. Apply this to the multiplicative group

A = Gm(F ) = F
×
,

in which case we also set µN(F ) = A[N ]. Of course, |µN(F )| = N if N ∈ F× and
µp(F ) = 0 if pF = 0. Thus Tp(A) = 0 if pF = 0, Tp(A) ' Zp otherwise, and
µN(F ) ' Z/NZ if N ∈ F×. Using the obvious action of GF on A, we obtain for
p ∈ F× a continous character

χ : GF → AutZp(Tp(A)) = Z×
p

called the p-adic cyclotomic character of GF . For N ∈ F×, the mod N cyclotomic
character is the character GF → (Z/NZ)× defined by µN(F ). By construction,
F (χ) = ∪n≥1F (µpn(F )) ⊂ F .

When F = R, χ is the non-trivial character of GR = Z/2Z.

When F is a finite field of characteristic ` 6= p, this Galois representation of
GF = Ẑ is the one mapping FrobF to |F |−1 ∈ Z∗

p by definition of FrobF .

When F is a finite extension of Q` and (N, `) = 1, then XN −1 is separable over
kF so A[N ] = µN(F ) ⊂ F ur, and χ factors through a character of GF /IF = GkF

whenever p ∈ F ∗. As the reduction “mod πF ” induces an bijection µN(F )
∼→ µN(kF )

for N ∈ F×, we see that this latter character is nothing but the p-adic cyclotomic
character of GkF

. The case ` = p is subtler; a useful way to describe χ is in terms of
the reciprocity map: χ o recF : F ∗ → Q∗

p is the composition of the norm F ∗ → Q∗
p

with the character sending p to 1 and which is the identity on Z∗
p (see the exercises).

When F is a number field, the bijections µN(F )
∼→ µN(Fv) ensure that for each

v ∈ S(F ), χ|GFv
is the p-adic cyclotomic character of GFv . In particular, χ is the

unique character GF → Z×
p unramified outside (the primes dividing) p,∞, such that

for a finite place v not dividing p,∞, we have χ(Frobv) = |kFv |−1 ∈ Z×
p . A simple

but interesting application of this is the following classical result.
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Proposition 2.3. (Gauss) For each integer N ≥ 1, the N-th cyclotomic poly-
nomial is irreducible over Q.

Proof — Indeed, χN : GQ → (Z/NZ)× is unramified outside the primes ` dividing
N and ∞, and for such an `, χN(Frob`) = `−1 ∈ (Z/NZ)×. As those elements
generate (Z/NZ)× when ` varies, χN is surjective, thus Q(χN) = Q(e2iπ/N) has
degree ϕ(N) over Q, and the result follows. �

Definition 2.4. (Tate twist) If V is a Galois representation of GF on a Qp-
vectorspace, and if i ∈ Z, we denote by V (i) the representation V twisted by the
character χi.

2.5. The Tate module of an elliptic curve. Assume now that E is an elliptic
curve over F , that is a projective, geometrically connected, and smooth, algebraic
curve over F of genus 1, equipped with a rational point O ∈ E(F ). As is well-known,
E may be embedded as a non-singular cubic of P2

F in such a way that the projective
line at infinity meets O as a triple (flex) point. The affine part of E has then a
Weierstrass equation of the form

(2.1) y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ F.

The non-singularity of this plane curve is expressed in the non-vanishing of its dis-
criminant, which some explicit element4∆ ∈ Z[a1, . . . , a6]. Conversely, any plane
curve defined by such an equation with non-zero ∆ defines an elliptic curve over F ,
by taking the closure in P2

F . The Weierstrass equation is non-unique however.5

Recall that the relation “P +Q+R = O if, and only if, there is a projective line in
P2 whose intersection with E is P, Q, R (with multiplicities)” defines an abelian group
structure on A = E(F ) with identity element O. This abelian group is a discrete
GF -module. The addition in A actually comes from an F -morphism E × E → E,
hence so does the multiplication by N , often denoted by [N ] : E → E, for any
integer N ≥ 1. It can be shown that [N ] is finite of degree N2, étale if N ∈ F ∗. We
shall content ourselves with the following proposition here.

Proposition 2.6. A[N ] ' (Z/NZ)2 if N ∈ F× and Tp(A) ' Z2
p if p ∈ F ∗.

Proof — We only have to show the assertion on A[N ]. Remark first that if
F is algebraically closed, and if F → F ′ is a field embedding, then E(F )[N ] is
finite if and only if E(F ′)[N ] is finite, in which case they are equal, as E(F )[N ]
is (the F -points of) the closed F -subvariety [N ]−1({O}) of E. When F = C the
abelian group E(C) is a compact complex torus C/Λ by Weierstrass theory, so
A[N ] ' 1

N
Λ/Λ ' (Z/NZ)2. By the remark above, this concludes the proof when

F is any field that embeds into C, and in particular when F is finitely generated
4Following Silverman, ∆ = −b2

2b8− 8b3
4− 27b2

6 + 9b2b4b6 where b2 = a2
1 + 4a2, b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6 and b8 = a2

1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4. The important property of ∆ is
that the Weierstrass plane curve, viewed as a scheme over Z[a1, . . . , a6], is smooth exactly over
Z[a1, . . . , a6][∆−1]. When a1 = a3 = a2 = 0, to which we can always reduce when 6 is invertible,
we essentially have the usual formula ∆ = −16(4a3

4 + 27a2
6).

5Using the Riemann-Roch theorem, we may show that it is unique up to changes of coordinates
of the form x = u2x′ + r and y = u3y′ + su2x′ + t where u, r, s, t ∈ F and u 6= 0, see Silverman’s
book Chap. III.
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over Q. For a general F of characteristic 0, remark that E is always defined over its
finitely generated subfield F0 = Frac(Z[a1, . . . , a6]), hence we are done by applying
the remark again (this method is called "Lefschetz principle"). Let us postpone the
case where F has positive characteristic. �

Assume that F is complete for some discrete valuation v, let O be its valuation
ring and k its residue field. An integral Weierstrass equation for E is an equation as
in (2.1) such that ai ∈ O for each i. We say that E has good reduction over F if, up
to a projective linear change of coordinates in P2

F , E possesses an integral Weierstrass
equation with ∆ ∈ O×. We assume now that this is the case, and we fix such an
integral Weierstrass equation. Denote by E the elliptic curve6 over k obtained by
reducing this equation modulo the maximal ideal of O. The natural reduction map
P2(O) = P2(F ) → P2(k) induces a natural reduction map E(F ) → E(k).

Proposition 2.7. (Good reduction case) This map is a surjective group homo-
morphism. Denote by E0(F ) its kernel and by mF the maximal ideal of F . The map
(x, y) 7→ x/y induces a group isomorphism E0(F )

∼→ mF if we endow this last set
with the formal group law defined by E.

In particular, for each integer N ≥ 1 in O×, [N ] : E0(F ) → E0(F ) is bijective
and the reduction map induces an isomorphism E(F )[N ]

∼→ E(k)[N ].

Proof — As ∆ ∈ O×, the integral Weierstrass model of E is smooth over O, hence
E(F ) = E(O) → E(k) is surjective by Hensel’s lemma. The reduction map is a
group homomorphism by definition of the group law, as we may always re-scale any
line in P2 so that its coefficients are in O and one of them in O×.

Consider now the change of projective linear coordinates on P2
O sending O to

(0, 0) ∈ A2 given by (z, w) = (−x/y, 1/y); the Weierstrass equation becomes

w = z3 + a1zw + a2z
2w + a3w

2 + a4zw
2 + a6w

3.

It follows that if z ∈ mF then there is one, and only one, w ∈ F such that (z, w) ∈
E0(F ), in which case w ∈ mF as well, namely

w = z3(1 + a1z + (a2
1 + a2)z

2 + · · · ) ∈ Z[a1, . . . , a6][[z]].

This shows that the coordinate z : E0(F )
∼→ mF is bijective. The group law is easily

“computed” in terms of the coordinate z: if R is the polynomial ring Z[a1, . . . , a6],
there exists an element

F(u, v) ∈ R[[u, v]], F(u, v) ≡ u + v mod (u, v)2,

such that whenever Pi = (zi, wi) ∈ E0(F ), i = 1, 2, 3 such that P1 + P2 = P3,
then z3 = F(z1, z2). It follows that for each integer N ≥ 1, there is an element
FN ∈ R[[z]],FN(z) ≡ Nz mod (z2), such that [N ] : E0(F ) → E0(F ) is z 7→ FN(z).
(See Silverman’s book Chap. IV §1 for some details about the computations abovem
as well as Fargues lectures for wonderful things about formal groups.)

Assume now that N ∈ O×. The subset O×z + z2O[[z]] ⊂ O[[z]] being a group
for the composition of power series, it follows that [N ] is bijective on E0(F ). In
particular, E(F )[N ] → E(k)[N ] is injective. If P ∈ E(k)[N ], we have seen that

6This curve actually is well-defined as the minimal Weierstrass equation is unique of to changes
of coordinates with (u, r, s, t) ∈ O4

F and u ∈ O×
F .
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there is some Q ∈ E(F ) that lifts P . So [N ]Q ∈ E0(F ), hence has the form [N ]R
for some R ∈ E0(F ), hence Q−R ∈ E0(F )[N ] lifts P . �

Proof — (End of proof of proposition 2.6). When F is algebraically closed of
characteristic p > 0, we may view F as the residue field of the Witt vectors W (F ) of
F , and we may lift (anyhow) a Weierstrass equation to W (F ). For instance, if F is
the algebraic closure of a finite field of characteristic p, then W (F ) is isomorphic to
the p-adic completion ofOQur

p
. Note that the discriminant of this integral Weierstrass

equation is non-zero mod p, hence in W (F )×.

Changing the notations, assume now that F is complete for a discrete valuation
v : F× → Z such that v(p) = 1, with algebraically closed residue field k, and
that E has good reduction over F , with residue curve any given elliptic curve E
over k. By the characteristic 0 case, there is a finite extension L of F such that
E(L)[N ] = E(F )[N ] ' (Z/NZ)2. Proposition 2.7 ensures that the reduction map

E(L)[N ] → E(k)[N ]

is an isomorphism, and we are done. �

We usually set Tp(E) := Tp(A). For p ∈ F×, the Galois representation

ρE,p : GF → AutZp(Tp(E)) ' GL2(Zp)

is usually extremely interesting, in the sense that it tells a lot about the elliptic
curve E.7

For instance if F is finite with q elements and p is prime to q, then a theorem of
Weil asserts that

|E(F )| = q + 1− trace(ρE,p(Frob−1
F )) and det(ρE,p(Frob−1

F )) = q.

A theorem of Hasse says that |trace(ρE,p(Frob−1
F ))| ≤ 2

√
q. For a general F , the

Weil-pairing shows that det(ρE,p) is the p-adic cyclotomic character of GF .

Let F be a finite extension of Q`. When E has good reduction over F , Prop. 2.7
shows that E(F )[N ] ⊂ E(F ur) whenever N ∈ O∗

F , in which case the reduction mod
πF induces a group isomorphism E(F )[N ]

∼→ E(kF )[N ]. In particular, if p ∈ O×
F

and E has good reduction over F , then ρE,p is unramified and factors through a
representation of GkF

which is exactly ρE,p.

If F → F ′ is any field embedding and N ∈ F ∗, then E(F )[N ] = E(F ′)[N ] so
it is clear that Tp(E)|GF ′ = Tp(E ×F F ′) for any p. As a consequence, the analysis
above shows that when F is a number field, the datum of ρE,p is exactly the same
as the one of the collection of |E(kFv)| for almost all v ∈ S(F ), as expressed by the
following statement.

Theorem 2.8. Let S be the finite set of primes v of F such that either v ∈
Sp(F ) ∪ S∞(F ), or E has bad reduction at Fv.

The Galois representation ρE,p : GF → GL2(Qp) is semi-simple, unramified
outside S, and for all v /∈ S we have trace(ρE,p(Frob−1

v )) = |kFv | + 1− |E(kFv)|. It

7Not always, however, for instance it does not say anything if F is algebraically closed. It is
typically interesting if F is of finite type over its prime subfield.
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is the unique Galois representation with these properties. It is irreducible if E has
no complex multiplication.

This follows from the analysis above and Prop.1.9, except the fact that Vp(E)
is a semi-simple, irreducible is the non-CM case, GF -representation. This actually
comes from other ideas, and is rather specific to number fields. Briefly, if E is CM
then Vp is easily seen to be semi-simple. Assume E is not CM. It is enough to
check that Tp(E) has only finitely many GF -stable Zp-lattices up to homothety. It
is a general fact that for each such lattice Λ there exists an elliptic curve E ′ over
F and an isogeny E ′ → E such that Λ is the image of Tp(E

′) via this isogeny.
It turns out that E and E ′ have good reduction at the same finite places (this
can be read off from Vp(E) = Vp(E

′), by the Neron-Ogg-Shafarevic criterion). But
up to isomorphisms, there are only finitely many elliptic curves over F with good
reduction outside a fixed finite set S: this is Shafarevic’s theorem see e.g. Serre’s
Abelian `-adic representations Chap. IV 1.4.


