Appendix A : a sketch of the construction of $\rho_{f,\lambda}$ when f has weight 2, following Eichler and Shimura.

The aim of this appendix is to give an idea of the original construction of the Galois representation $\rho_{f,\lambda}$ of Theorem ??, due to Eichler ($\varepsilon = 1$) and Shimura (any ε) when the weight k of f is 2, based on the congruence relation¹. We insist that we shall not try to give below the cheapest proof (compare with the one in Shimura's book), notably regarding the input of algebraic geometry; on the other hand the ideas of the argument look reasonably clear this way.

Step 1: Modular forms as differential forms on the modular curve $X_1(N)(\mathbb{C})$. For $N \geq 4$, the group $\Gamma_1(N)$ acts freely on \mathcal{H} , hence it makes sense to consider (for any N) the complex Riemann surface

$$Y_1(N)(\mathbb{C}) := \Gamma_1(N) \setminus \mathcal{H}.$$

As is well known, this Riemann surface is non-compact, but has finitely many cusps, in natural bijection with $\Gamma_1(N) \setminus \mathbb{P}^1(\mathbb{Q})$. We denote by $X_1(N)(\mathbb{C})$ the compact Riemann surface obtained by adding these cusps. Remark that a holomorphic differential 1-form $f(\tau)d\tau$ on \mathcal{H} is invariant by $\Gamma_1(N)$, *i.e.* descends to a holomorphic 1-form ω_f on $Y_1(N)(\mathbb{C})$ if $f \in M_2(N)$: this is obvious when $N \geq 4$ as $\Gamma_1(N)$ is torsion-free, and it is easily checked² to hold for any N. By an inspection of differentials at the cusps, one even checks that $f \mapsto \omega_f$ induces an isomorphism

$$S_2(N) \simeq H^0(X_1(N)(\mathbb{C}), \Omega^1)$$

(see e.g. Shimura's book). In particular, dim $S_2(N)$ is the genus of $X_1(N)$. Using the Riemann-Hurwitz formula, one can show for instance that this genus if 0 for $1 \leq N \leq 12$ and $N \neq 11$, in which case $X_1(N)(\mathbb{C}) \simeq \mathbb{P}^1(\mathbb{C})$. It follows that, without loss of generality, we may assume that $N \geq 4$ anyway.

Recall the exact complex $0 \to \mathbb{C} \to \mathcal{O} \xrightarrow{f \mapsto df} \Omega^1 \to 0$ on any compact Riemann surface S. It is a classical fact that it leads to an exact sequence $0 \to H^0(S, \Omega^1) \to H^1(S, \mathbb{C}) \to H^1(S, \mathcal{O}) \to 0$, and that the last map has a natural section provided by the *anti-holomorphic* 1-forms, so we have $H^1(S, \mathbb{C}) = H^0(S, \Omega^1) \oplus \overline{H^0(S, \Omega^1)}$. In particular,

firstiso

(0.1)

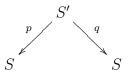
$$S_2(N) \oplus \overline{S_2(N)} = H^1(X_1(N)(\mathbb{C}), \mathbb{C}).$$

Step 2: Hecke correspondences. If S and S' are two Riemann surfaces and $f: S' \to S$ is a finite (=non constant) morphism, we have a natural linear map $f^*: H^1(S, \mathbb{C}) \to H^1(S', \mathbb{C})$ given by the pull-back of differential 1-forms. In terms of the de Rham-Betti comparison theorem, f^* is the Poincaré dual to the direct image of 1-cycles on $H_1(S', \mathbb{C})$. Moreover, $f^*(H^0(S, \Omega^1)) \subset H^0(S', \Omega^1)$. There is also a trace map : $f_*: H^1(S', \mathbb{C}) \to H^1(S, \mathbb{C})$, which is dual to the inverse image

¹There is an alternative proof due to Langlands and Kottwitz (that works for any $k \geq 2$) based on the comparison between the Selberg trace formula for $\operatorname{GL}_2/\mathbb{Q}$ applied to some specific functions and the formula giving the number of elliptic cuvres (plus some level structure) over a given finite field, gathered by isogeny classes (theory of Weil numbers of elliptic curves: Tate, Honda-Tate). This approach is actually much more demanding in mathematics, however it generalizes well to higher-dimensional Shimura varieties. See e.g. Clozel's Bourbaki talk on Kottwitz' results, Casselman's papers at the Corvallis conference, or the books of Laumon.)

 $^{^{2}}$ Be sure to understand what has to be checked !

(or "correstriction") of 1-cycles on $H_1(S, \mathbb{C})$. As a consequence of all of this, if we have correspondence on S, i.e. a pair (p, q) of finite morphisms:



We have a natural linear map on $H^1(S, \mathbb{C})$ preserving $H^0(S, \Omega^1)$ defined by $\omega \mapsto p_*q^*\omega$. Of course, (q, p) defines a correspondence as well, called the dual or transpose of (p, q).

It turns out that by construction, the Hecke correspondences on $S_2(N)$ are of this form. Indeed, let ℓ be some prime such that $(\ell, N) = 1$, and set

$$Y_1(N,\ell)(\mathbb{C}) := \Gamma_1(N,\ell) \setminus \mathcal{H}, \quad \Gamma_1(N,\ell) := \Gamma_1(N) \cap \Gamma_0(\ell).$$

Again, this Riemann surface has a finite number of cusps in bijection with $\Gamma_1(N, \ell) \setminus \mathbb{P}^1(\mathbb{Q})$, and by adding these cusps we obtain a compact Rieman surface denoted by $X_1(N, \ell)(\mathbb{C})$.

Remark that if $x = \begin{pmatrix} 1 & 0 \\ 0 & \ell \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Q})^+$, then $\Gamma_1(N) \cap x^{-1}\Gamma_1(N)x = \Gamma_1(N,\ell)$. It follows that we can define two natural morphisms

$$p, q: X_1(N, \ell)(\mathbb{C}) \to X_1(N)(\mathbb{C})$$

as follows. First, p is the natural map induced by quotient from the inclusion $\Gamma_1(N,\ell) \subset \Gamma_1(N)$, and q is induced by the map $\tau \mapsto x\tau$ on \mathcal{H} . Concretely, if $\omega = \omega_f \in S_2(N)$ then $q^*\omega = (f|_2x)(\tau)d\tau$ is invariant by $x^{-1}\Gamma_1(N)x$, hence by $\Gamma_1(N,\ell)$. If we choose a finite number of elements $y_i \in \Gamma_1(N)$ such that $\Gamma_1(N) = \prod_i \Gamma_1(N,\ell)y_i$, then by definition $p_*q^*\omega = (\sum_{i=0}^{\ell} f|_2xy_i)d\tau$. But we check easily that $\Gamma_1(N)x\Gamma_1(N) = \prod_i \Gamma_1(N)xy_i$, so that

$$p_*q^*\omega = T_\ell(f)(\tau)d\tau$$

as claimed above.

COROLLARY 0.1. If $f \in S_2(N, \varepsilon)$ is an eigenform, and $T_{\ell}(f) = a_{\ell}f$ for each prime ℓ prime to N, then a_{ℓ} is an algebraic integer and the coefficient field of f

$$\mathbb{Q}(\{a_{\ell}, (\ell, N) = 1\}) \subset \mathbb{C}$$

is a finite extension of \mathbb{Q} .

Proof — Indeed, the Hecke correspondences beeing induced by correspondences on the Riemann surface $X_1(N)(\mathbb{C})$, they preserve the integral structure

$$H^1(X_1(N)(\mathbb{C}),\mathbb{Z}) \subset H^1(X_1(N)(\mathbb{C}),\mathbb{C})$$

defined by the Betti cohomology. The first statement follows then for instance from the Cayley-Hamilton theorem, and the second from the fact that the coefficient field of f arises then as a residue field of a commutative subalgebra of the endomorphisms of the finite dimensional \mathbb{Q} -vectorspace $H^1(X_1(N)(\mathbb{C}), \mathbb{Q})$. We refer to the exercises of Part I for the statements of the basic facts of Atkin-Lehner theory and newforms.

defVf

PROPOSITION 0.2. Assume that $f = \sum_{n \ge 1} a_n q^n \in S_2(N, \varepsilon)$ is a normalized newform and fix an embedding $\iota_{\infty} : \overline{\mathbb{Q}} \to \mathbb{C}$. The biggest subspace

$$V_f \subset H^1(X_1(N)(\mathbb{C}), \mathbb{Q}) \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}$$

over which each T_{ℓ} for $(\ell, N) = 1$ acts by the scalar $\iota_{\infty}^{-1}(a_{\ell})$ has $\overline{\mathbb{Q}}$ -dimension 2.

Proof — Indeed, as each T_{ℓ} preserves $H^1(X_1(N)(\mathbb{C}), \mathbb{Q})$, the eigenspace above is a $\overline{\mathbb{Q}}$ -structure of the similar eigenspace in $H^1(X_1(N)(\mathbb{C}) = S_2(N) \oplus \overline{S_2(N)})$, which has dimension 1 + 1 = 2 by Atkin-Lehner's theorem. □

Step 3. The natural Q-structure of modular curves and definition of $\rho_{f,\lambda}$. The modular curves $X_1(N, \mathbb{C})$ and $X_1(N, \ell)(\mathbb{C})$ are compact Riemann surfaces. A theorem of Riemann asserts that any such surface is the complex point of a unique projective algebraic smooth curve over \mathbb{C} (hence the $-(\mathbb{C})$ in their name). It turns out that both of them are defined over \mathbb{Q} , they even have a natural³ Q-structure. Indeed, it is enough to define a Q-structure on their field of meromorphic functions⁴, and a good definition turns out to be the following: a meromorphic function f on any of these curves is said Q-rational if its q-expansion lies in $\mathbb{Q}((q))$. See Shimura for the proof that it is indeed a Q-structure. An example of a non-constant such function is the usual j function, whose q-expansion

$$j(\tau) = q^{-1} + 744 + 196884q + \dots$$

even lies in $\mathbb{Z}((q))$. Denote for the moment by $X_1(N)$ and $X_1(N, \ell)$ the projective smooth algebraic curves over \mathbb{Q} defined by these \mathbb{Q} -structures. A natural place to look for Galois representation of $G_{\mathbb{Q}}$ is the étale cohomology of these curves. (Recall that in the case of curves, a pocket substitute for the étale homology is provided by the Tate-module of the Pic⁰ of the curve) Recall also the étale-Betti comparison theorem

$$H^{1}_{\text{et}}(X_{1}(N)_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}) \xrightarrow{\sim} H^{1}_{\text{et}}(X_{1}(N)_{\mathbb{C}}, \mathbb{Q}_{p}) \xrightarrow{\sim} H^{1}(X_{1}(N)(\mathbb{C}), \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{Q}_{p}.$$

If we fix an embedding $\iota_p: \overline{\mathbb{Q}} \to \overline{\mathbb{Q}}_p$, it induces an isomorphism

$$H^{1}_{\text{et}}(X_{1}(N)_{\overline{\mathbb{Q}}}, \overline{\mathbb{Q}}_{p}) := H^{1}_{\text{et}}(X_{1}(N)_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}) \otimes_{\mathbb{Q}_{p}} \overline{\mathbb{Q}}_{p} \xrightarrow{\sim} H^{1}(X_{1}(N)(\mathbb{C}), \mathbb{Q}) \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}_{p}.$$

These isomorphisms commute with correspondences on $X_1(N)$ defined over \mathbb{Q} . As we shall see below, the natural maps $X_1(N,\ell)(\mathbb{C}) \to X_1(N)(\mathbb{C})$ defined above are actually defined over \mathbb{Q} , hence so are the geometric Hecke-correspondences T_ℓ . It follows that if f is as in Prop. 0.2, and if $\iota_p \iota_{\infty}^{-1} : E \to \overline{\mathbb{Q}}_p$ induces the place λ of E, and if

$$V_{f,\lambda} \subset H^1_{\text{et}}(X_1(N)_{\overline{\mathbb{Q}}}, \overline{\mathbb{Q}}_p)$$

³In general, if a complex algebraic curve is defined over \mathbb{Q} , there may well be non-isomorphic \mathbb{Q} -structure: for instance, the projective plane conics $x^2 + y^2 + z^2 = 0$ and $x^2 - y^2 + z^2 = 0$ are non isomorphic over \mathbb{Q} (the first having no rational point) but they are over \mathbb{C} .

⁴If K is the field of meromorphic functions on $X_1(N)(\mathbb{C})$ say, a \mathbb{Q} -structure of K is a finitely generated subfield k such that $k \otimes_{\mathbb{Q}} \mathbb{C} = K$.

denotes the biggest subspace over which each T_{ℓ} with (ℓ, N) acts by multiplication by a_{ℓ} (or more precisely by $\iota_p \iota_{\infty}^{-1}(a_{\ell})$), then the comparison theorem étale-Betti induces an isomorphism

$$V_{f,\lambda} \xrightarrow{\sim} V_f \otimes_{\overline{\mathbb{Q}}} \overline{\mathbb{Q}}_p,$$

and in particular, $V_{f,\lambda}$ has dimension 2 over $\overline{\mathbb{Q}}_p$. The Galois action of $G_{\mathbb{Q}}$ on $H^1_{\text{et}}(X_1(N)_{\overline{\mathbb{Q}}}, \mathbb{Q}_p)$ commutes with all the Hecke correspondences defined over \mathbb{Q} , thus $V_{f,\lambda}$ is stable by $G_{\mathbb{Q}}$.

DEFINITION 0.3. Define $\rho_{f,\lambda}$ as the Galois representation of $G_{\mathbb{Q}}$ on $V_{f,\lambda}$.

It remains to show that $\rho_{f,\lambda}$ has the required properties. We already know that, as any geometric Galois representation, it is unramified outside some finite set S. The statement asserts that S may be reduced to the set of divisors of $Np\infty$. It is enough to show that $X_1(N)$ has good reduction outside N, which is not obvious at all from the definition, but true (Igusa). This property will be included in the next (admitted) statement.

Step 4: Arithmetic moduli of elliptic curves. Recall that if E is a complex elliptic curve, then $E \simeq \mathbb{C}/\Lambda$ for some lattice $\Lambda \subset \mathbb{C}$ which is unique up to multiplication by $\lambda \in \mathbb{C}^*$. For $\tau \in \mathcal{H}$, set $E_{\tau} = \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$ and $P_{\tau} = \overline{1/N} \in E_{\tau}$ (it is a point of order N). The Riemann surface $Y_1(N)(\mathbb{C})$ parameterizes complex elliptic curves equipped with a point of order N:

LEMMA 0.4. The map $\tau \mapsto (E_{\tau}, P_{\tau})$ induces a bijection between $Y_1(N)(\mathbb{C})$ and the set of isomorphism classes of pairs (E, P) with E a complex elliptic curve and $P \in E$ a point of order N.

We leave this statement as an exercise to the reader. By definition, an (iso)morphism $(E, P) \rightarrow (E', P)$ is an (iso)morphism $E \rightarrow E'$ sending P to P'. Similarly, one can show that for $(\ell, N) = 1$, $Y_1(N, \ell)(\mathbb{C})$ parameterizes the isomorphism classes of triples (E, P, H) where E is an elliptic curve, $P \in E$ a point of order N, and $H \subset E$ a subgroup of order ℓ . From this point of view, the Hecke correspondence T_{ℓ} is the transpose of the map

$$Y_1(N)(\mathbb{C}) \to \operatorname{Div}(Y_1(N)(\mathbb{C})), \quad (E,P) \mapsto \sum_H [(E/H, (P+H)/H)],$$

where H runs over the $\ell + 1$ sugroups of E of order ℓ .

It is an important fact that whenever $N \geq 4$, the moduli properties above of complex modular curves extend to their Q-structures defined above, which actually gives another way to see this Q-structure. This actually extends beautifully over Z. For all of this we refer to the book of Katz-Mazur "Arithmetic moduli of elliptic curves" (other useful references : Deligne-Rapoport paper in "Modular functions in 1-variables II", Hida "Geometric modular forms and elliptic curve"). We give below a brief survey of what we shall need from this book.

If S is a scheme, an elliptic curve over S (understand : "a family of elliptic curves parameterized by S") is a proper smooth morphism $E \to S$ equipped with a section $O \in E(S)$ such that for any point $s \in S$, the fiber E_s is an elliptic curve over the residue field k(s) with neutral element $O \times_S s$. If E is such an elliptic curve, it may be given a structure a commutative S-group scheme over E with neutral element 0

lemmarep

in a natural way, which coincides over the fibers of S with the group law of elliptic curves encountered before. For any $N \ge 1$ its N-torsion E[N] is a finite flat group scheme over S of degree N^2 , which is étale if and only if $N \in \mathcal{O}(S)^{\times}$. We refer to Fargues' lectures for the basics about finite flat commutative group schemes.

Denote by F the contravariant functor from schemes over $\mathbb{Z}[1/N]$ to sets, where F(S) is the set of isomorphism classes of pairs (E, P) where E is an elliptic curve over S and $P: \mu_N \to E[N]$ an embedding of S-group schemes. We also denote by F_{ℓ} the similar functor parameterizing isomorphism classes of triples (E, P, H) where H is furthermore a finite flat S-subgroup of $E[\ell]$ of order ℓ .

THEOREM 0.5. (Shimura, Igusa, Deligne-Rapoport, Katz-Mazur, Drinfeld). Assume $N \geq 5$. The functor F is representable by a smooth affine curve $Y_1(N)$ over $\mathbb{Z}[1/N]$ whose complex points are isomorphic to the Riemann surface $Y_1(N)(\mathbb{C})$ introduced above in a compatible way with lemma 0.4. This scheme $Y_1(N)$ is an open subscheme of a natural proper smooth curve $X_1(N)$ over $\mathbb{Z}[1/N]$ ("theory of the Tate curve"), and whose complex points are isomorphic to the Riemann surface $X_1(N)(\mathbb{C})$ introduced above.

Similarly, if $(\ell, N) = 1$, then F_{ℓ} is representable by a flat affine curve $Y_1(N, \ell)$ over $\mathbb{Z}[1/N]$, whose complex points are isomorphic to the Riemann surface $Y_1(N, \ell)(\mathbb{C})$ introduced above (again in a compatible way with the identification above for the \mathbb{C} points). This scheme $Y_1(N, \ell)$ is an open subscheme of a natural proper flat curve $X_1(N, \ell)$ over $\mathbb{Z}[1/N]$ (idem), which is smooth over $\mathbb{Z}[1/N\ell]$, and whose complex points are isomorphic to the Riemann surface $X_1(N, \ell)(\mathbb{C})$ introduced above.

The morphisms $F_{\ell} \to F$, defined by $(E, P, H) \mapsto (E, P)$ and $(E, P, H) \mapsto (E/H, (P+H)/H)$, extend to finite flat morphisms $X_1(N, \ell) \to X_1(N)$. In particular the geometric Hecke correspondence T_{ℓ} extends to a finite flat correspondence on $X_1(N)$ over $\mathbb{Z}[1/N]$.

We take all of this as a (rather heavy) black-box. It is understood that the modular curves over $\mathbb{Z}[1/N]$ defined by this theorem coincide with our previous $X_1(N)$ and $X_1(N, \ell)$ when pulled-back to \mathbb{Q} . Let us stress that the most difficult part of this statement is to prove the representability of F and F_{ℓ} . It is then comparatively easy to check for instance that $X_1(N)$ is a smooth curve over $\mathbb{Z}[1/N]$ (so that $X_1(N)_{\mathbb{Q}}$ has good reduction outside the primes dividing N).

Till now, we have defined $\rho_{f,\lambda}$ and explained why it is unramified outside $Np\infty$. Indeed, by property (i) and (iii) and Example (iii) of the paragraph on étale cohomology there are natural isomorphisms for $(\ell, Np) = 1$:

$$H^{1}_{\mathrm{et}}(X_{1}(N)_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p})|_{G_{\mathbb{F}_{\ell}}} \xrightarrow{\sim} H^{1}_{\mathrm{et}}(X_{1}(N)_{\overline{\mathbb{F}_{\ell}}}, \mathbb{Q}_{p}) \xrightarrow{\sim} \mathrm{Hom}_{\mathbb{Z}_{p}}(T_{p}(X_{1}(N)_{\mathbb{F}_{\ell}}), \mathbb{Q}_{p})$$

and these isomorphisms commute with the geometric T_{ℓ} correspondences (this uses that T_{ℓ} is finite flat over $\mathbb{Z}[1/N]$ for the commutation with the Grothendieck's base change theorems). In particular,

almostfini (0.2)
$$(V_{f,\lambda}^{\vee})_{|G_{\mathbb{F}_{\ell}}} = (T_p(X_1(N)) \otimes_{\mathbb{Z}_p} \overline{\mathbb{Q}}_p)[f]$$

where the [f] on the right means "the biggest subspace over which all each T_{ℓ} 's act by multiplication by $\iota_p \iota_{\infty}^{-1} a_{\ell}$ ". It makes now sense to talk about det $(1 - T \rho_{E,\lambda}(\operatorname{Frob}_{\ell}))$ for ℓ prime to Np.

Step 5. Eichler-Shimura's congruence relation. Fix an ℓ prime to Np. The curve $X_1(N)$ has a natural action of $(\mathbb{Z}/N\mathbb{Z})^{\times}$, usually denoted by $d \mapsto \langle d \rangle$, given on the moduli problem F by raising the μ_N -point P to the power d. On the \mathbb{C} -points, it is simply induced by the left action of $\Gamma_0(N)/\Gamma_1(N)$ on $X_1(N)$.

THEOREM 0.6. (Eichler-Shimura) On $\operatorname{Pic}(X_1(N)_{\mathbb{F}_{\ell}})$ we have

$$T_{\ell} = \operatorname{frob}_{\ell} + \ell \langle \ell \rangle \operatorname{frob}_{\ell}^{-1}.$$

Let C be a projective smooth algebraic curve over \mathbb{F}_{ℓ} . Recall that there is a geometric Frobenius endomorphism $\operatorname{Fr}_{\ell} : C \to C$ which is finite, purely inseparable, of degree ℓ (it is just raising to the ℓ -th power on functions). The action induced by Fr_{ℓ} on $C(\overline{F})$ coincides with the natural one of $\operatorname{frob}_{\ell}$, so the correspondence (id, $\operatorname{Fr}_{\ell}) : C \to C$ is the natural endomorphism $\operatorname{frob}_{\ell}$ on $\operatorname{Div}(C)$ and $\operatorname{Pic}^{0}(C)$. Its dual correspondence $\operatorname{Fr}_{\ell}^{\vee} = (\operatorname{Fr}_{\ell}, \operatorname{id})$ acts then via $\ell \operatorname{Fr}_{\ell}^{-1}$ on these spaces.

Assume now that $C = X_1(N)_{\mathbb{F}_{\ell}}$. By the main theorem of Step 4, $Y_1(N)(\overline{\mathbb{F}}_{\ell})$ is in natural bijection with pairs (E, P) where E is an elliptic curve over $\overline{\mathbb{F}}_{\ell}$ and P: $\mu_N(\overline{\mathbb{F}}_{\ell}) \to E(\overline{\mathbb{F}}_{\ell})[N]$ a $\mathbb{Z}[G_{\mathbb{F}_{\ell}}]$ -equivariant embedding. Moreover, the correspondence T_{ℓ} acts on $\text{Div}(Y_1(N)_{\mathbb{F}_{\ell}})$ by the formula

$$(E, P) \mapsto \sum_{H} (E/H, (P+H)/H)$$

where H runs over the $\ell + 1$ subgroup schemes of $E[\ell]$. By (P + H)/H we simply mean the composite of P with the natural isomorphism $E(\overline{\mathbb{F}}_{\ell})[N] \to (E/H)(\overline{\mathbb{F}}_{\ell})[N]$.

Let $D^{\text{ord}} \subset \text{Div}(C)$ be the subgroup generated by the points in $C(\overline{\mathbb{F}}_{\ell})$ which are in $Y_1(N)$, so of the form (E, P), and such that furthermore E is an ordinary elliptic curve. We refer to Silverman's book for the basics about ordinary elliptic curves. Recall that all but finitely many points of $C(\overline{\mathbb{F}}_{\ell})$ (omitting cusps as well) have this form. As any divisor on a curve is always linearly equivalent to a divisor omitting any given finite set of points, it follows that the natural map

$$D^{\mathrm{ord}} \to \mathrm{Pic}(C)$$

is surjective. It is thus enough to check Eichler-Shimura's relation on the free abelian group D^{ord} .

Fix E an ordinary elliptic curve over $\overline{\mathbb{F}}_{\ell}$. Recall that $[\ell] : E \to E$ has degree ℓ^2 , and inseparable degree ℓ in this case. The group scheme $E[\ell]$ has exactly one connected subgroup of order ℓ (isomorphic to μ_{ℓ}), namely $H := E[\ell]^0$ = the kernel of the Frobenius map

$$\operatorname{Fr}_{\ell}: E \longrightarrow E^{(\ell)} := E \times_{\overline{\mathbb{F}}_{\ell}} \overline{\mathbb{F}}_{\ell}$$

the latter scalar extension being given by $\operatorname{frob}_{\mathbb{F}_{\ell}}$ (it just amounts to raising the coefficients of a Weierstrass equation of E to the power ℓ to get $E^{(\ell)}$). In particular, Fr_{ℓ} induces an isomorphism $E/H \xrightarrow{\sim} E^{(\ell)}$, sending any μ_N -point P on the point $P^{(\ell)} := P \times_{\overline{\mathbb{F}}_{\ell}} \overline{\mathbb{F}}_{\ell} \to E^{(\ell)}$. In other words

$$[(E/H, (P+H)/H)] = \operatorname{frob}_{\ell}[(E, P)]$$
 if $H = E[p]^0$.

The ordinary elliptic curve E has exactly ℓ subgroups of order ℓ different from $E[\ell]^0$, which are all étale subgroups. For each such subgroup, say H, consider the

associated factorization of the multiplication by ℓ :

$$[\ell]: E \xrightarrow{\operatorname{can}} E/H \xrightarrow{j} E.$$

Then j is finite and purely inseparable of degree ℓ , so it necessarily factors as

$$E/H \xrightarrow{\operatorname{Fr}_{\ell}} (E/H)^{(\ell)} \xrightarrow{j'} E_{j}$$

as so does any inseparable morphism of degree ℓ between two projective smooth curves over $\overline{\mathbb{F}}_{\ell}$ (see e.g. Hartschorne's book), and j' is an isomorphism. If P is a μ_N -point of E, then j' sends the point $\operatorname{Fr}_{\ell} \operatorname{o} \operatorname{can}(P) = ((P+H)/H)^{(\ell)}$ to $[\ell]P$. It follows that

$$\operatorname{frob}_{\ell}[(E/H, (P+H)/H)] = \langle \ell \rangle[(E, P)]$$

whenever H is étale of order ℓ , which concludes the proof as there are ℓ such subgroups, and $\langle \ell \rangle$ is defined over \mathbb{F}_{ℓ} hence commutes with $\operatorname{frob}_{\ell}^{-1}$. \Box

REMARK. Let E be an elliptic curve over $\overline{\mathbb{Q}}_{\ell}$ with good ordinary reduction \overline{E} over $\overline{\mathbb{F}}_{\ell}$. If $H \subset E(\overline{\mathbb{Q}}_{\ell})[\ell]$ is a subgroup of order ℓ , the analysis above may be reformulated (say forgetting the μ_N -points) as a congruence in $\overline{\mathbb{F}}_{\ell}$:

$$j(E/H) \equiv j(E)^{\ell}$$
 or $j(E/H) \equiv j(E)^{\ell^{-1}}$

the first case occuring iff H reduces to $\overline{E}[\ell]^0$. (This makes sense as if E has good reduction over $\overline{\mathbb{Q}}_{\ell}$ then $j(E) \in \overline{\mathbb{Z}}_{\ell}$ and this property is preserved under isogenies) For this reason, the Eichler-Shimura's theorem is often called the *congruence relation*.

Step 6. End of the proof. By property (MF1) of modular forms, the operators $\langle d \rangle$ act by multiplication by $\varepsilon(\ell)$ on V_f . A complement to the main theorem of Step 4 is that these isomorphisms of $Y_1(N)$ actually extend to isomorphisms of $X_1(N)$ over $\mathbb{Z}[1/N]$. It follows that they commute with all the various kind of comparison theorems used above, hence that $\langle \ell \rangle$ acts by multiplication by $\varepsilon(\ell)$ on $V_{f,\lambda}$ for $(\ell, N) = 1$ (we omit the $\iota_p \iota_{\infty}^{-1}$). As T_{ℓ} acts on $V_{f,\lambda}$ by multiplication by a_{ℓ} , the Eichler-Shimura theorem reads on $V_{f,\lambda}$:

$$\operatorname{frob}_{\ell}^2 - a_{\ell} \operatorname{frob}_{\ell} + \ell \varepsilon(\ell) = 0, \ (\ell, Np) = 1.$$

It only remains to explain why the traces of $\operatorname{Fr}_{\ell} = \operatorname{frob}_{\ell}$ and of $\varepsilon(\ell)\operatorname{Fr}_{\ell}^{\vee} = \ell\varepsilon(\ell)\operatorname{frob}_{\ell}^{-1}$ coincide on $V_{f,\lambda}$. (to be continued)