
Appendix A : a sketch of the construction of ρf,λ when f has weight 2,
following Eichler and Shimura.

The aim of this appendix is to give an idea of the original construction of the
Galois representation ρf,λ of Theorem ??, due to Eichler (ε = 1) and Shimura (any
ε) when the weight k of f is 2, based on the congruence relation1. We insist that we
shall not try to give below the cheapest proof (compare with the one in Shimura’s
book), notably regarding the input of algebraic geometry; on the other hand the
ideas of the argument look reasonably clear this way.

Step 1: Modular forms as differential forms on the modular curve X1(N)(C).
For N ≥ 4, the group Γ1(N) acts freely on H, hence it makes sense to consider (for
any N) the complex Riemann surface

Y1(N)(C) := Γ1(N)\H.

As is well known, this Riemann surface is non-compact, but has finitely many
cusps, in natural bijection with Γ1(N)\P1(Q). We denote by X1(N)(C) the com-
pact Riemann surface obtained by adding these cusps. Remark that a holomorphic
differential 1-form f(τ)dτ on H is invariant by Γ1(N), i.e. descends to a holomor-
phic 1-form ωf on Y1(N)(C) if f ∈ M2(N) : this is obvious when N ≥ 4 as Γ1(N)
is torsion-free, and it is easily checked2 to hold for any N . By an inspection of
differentials at the cusps, one even checks that f 7→ ωf induces an isomorphism

S2(N) ' H0(X1(N)(C), Ω1)

(see e.g. Shimura’s book). In particular, dim S2(N) is the genus of X1(N). Using
the Riemann-Hurwitz formula, one can show for instance that this genus if 0 for
1 ≤ N ≤ 12 and N 6= 11, in which case X1(N)(C) ' P1(C). It follows that, without
loss of generality, we may assume that N ≥ 4 anyway.

Recall the exact complex 0 → C → O f 7→df→ Ω1 → 0 on any compact Riemann
surface S. It is a classical fact that it leads to an exact sequence 0 → H0(S, Ω1) →
H1(S, C) → H1(S,O) → 0, and that the last map has a natural section provided
by the anti-holomorphic 1-forms, so we have H1(S, C) = H0(S, Ω1)⊕H0(S, Ω1). In
particular,

firstiso (0.1) S2(N)⊕ S2(N) = H1(X1(N)(C), C).

Step 2: Hecke correspondences. If S and S ′ are two Riemann surfaces and
f : S ′ → S is a finite (=non constant) morphism, we have a natural linear map
f ∗ : H1(S, C) → H1(S ′, C) given by the pull-back of differential 1-forms. In terms
of the de Rham-Betti comparison theorem, f ∗ is the Poincaré dual to the direct
image of 1-cycles on H1(S

′, C). Moreover, f ∗(H0(S, Ω1)) ⊂ H0(S ′, Ω1). There is
also a trace map : f∗ : H1(S ′, C) → H1(S, C), which is dual to the inverse image

1There is an alternative proof due to Langlands and Kottwitz (that works for any k ≥ 2) based
on the comparison between the Selberg trace formula for GL2/Q applied to some specific functions
and the formula giving the number of elliptic cuvres (plus some level structure) over a given
finite field, gathered by isogeny classes (theory of Weil numbers of elliptic curves: Tate, Honda-
Tate). This approach is actually much more demanding in mathematics, however it generalizes
well to higher-dimensional Shimura varieties. See e.g. Clozel’s Bourbaki talk on Kottwitz’ results,
Casselman’s papers at the Corvallis conference, or the books of Laumon.)

2Be sure to understand what has to be checked !
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(or "correstriction") of 1-cycles on H1(S, C). As a consequence of all of this, if we
have correspondence on S, i.e. a pair (p, q) of finite morphisms:
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S S

We have a natural linear map on H1(S, C) preserving H0(S, Ω1) defined by ω 7→
p∗q

∗ω. Of course, (q, p) defines a correspondence as well, called the dual or transpose
of (p, q).

It turns out that by construction, the Hecke correspondences on S2(N) are of
this form. Indeed, let ` be some prime such that (`, N) = 1, and set

Y1(N, `)(C) := Γ1(N, `)\H, Γ1(N, `) := Γ1(N) ∩ Γ0(`).

Again, this Riemann surface has a finite number of cusps in bijection with Γ1(N, `)\P1(Q),
and by adding these cusps we obtain a compact Rieman surface denoted by X1(N, `)(C).

Remark that if x =

(
1 0
0 `

)
∈ GL2(Q)+, then Γ1(N)∩ x−1Γ1(N)x = Γ1(N, `).

It follows that we can define two natural morphisms

p, q : X1(N, `)(C) → X1(N)(C)

as follows. First, p is the natural map induced by quotient from the inclusion
Γ1(N, `) ⊂ Γ1(N), and q is induced by the map τ 7→ xτ on H. Concretely, if
ω = ωf ∈ S2(N) then q∗ω = (f |2x)(τ)dτ is invariant by x−1Γ1(N)x, hence by
Γ1(N, `). If we choose a finite number of elements yi ∈ Γ1(N) such that Γ1(N) =∐

i Γ1(N, `)yi, then by definition p∗q
∗ω == (

∑`
i=0 f |2xyi)dτ . But we check easily

that Γ1(N)xΓ1(N) =
∐

i Γ1(N)xyi, so that

p∗q
∗ω = T`(f)(τ)dτ

as claimed above.

Corollary 0.1. If f ∈ S2(N, ε) is an eigenform, and T`(f) = a`f for each
prime ` prime to N , then a` is an algebraic integer and the coefficient field of f

Q({a`, (`, N) = 1}) ⊂ C

is a finite extension of Q.

Proof — Indeed, the Hecke correspondences beeing induced by correspondences
on the Riemann surface X1(N)(C), they preserve the integral structure

H1(X1(N)(C), Z) ⊂ H1(X1(N)(C), C)

defined by the Betti cohomology. The first statement follows then for instance from
the Cayley-Hamilton theorem, and the second from the fact that the coefficient field
of f arises then as a residue field of a commutative subalgebra of the endomorphisms
of the finite dimensional Q-vectorspace H1(X1(N)(C), Q). �
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We refer to the exercises of Part I for the statements of the basic facts of Atkin-
Lehner theory and newforms.

defVf Proposition 0.2. Assume that f =
∑

n≥1 anq
n ∈ S2(N, ε) is a normalized new-

form and fix an embedding ι∞ : Q → C. The biggest subspace

Vf ⊂ H1(X1(N)(C), Q)⊗Q Q

over which each T` for (`, N) = 1 acts by the scalar ι−1
∞ (a`) has Q-dimension 2.

Proof — Indeed, as each T` preserves H1(X1(N)(C), Q), the eigenspace above is a
Q-structure of the similar eigenspace in H1(X1(N)(C) = S2(N)⊕S2(N), which has
dimension 1 + 1 = 2 by Atkin-Lehner’s theorem. �

Step 3. The natural Q-structure of modular curves and definition of ρf,λ. The
modular curves X1(N, C) and X1(N, `)(C) are compact Riemann surfaces. A the-
orem of Riemann asserts that any such surface is the complex point of a unique
projective algebraic smooth curve over C (hence the −(C) in their name). It turns
out that both of them are defined over Q, they even have a natural3 Q-structure.
Indeed, it is enough to define a Q-structure on their field of meromorphic functions4,
and a good definition turns out to be the following: a meromorphic function f on
any of these curves is said Q-rational if its q-expansion lies in Q((q)). See Shimura
for the proof that it is indeed a Q-structure. An example of a non-constant such
function is the usual j function, whose q-expansion

j(τ) = q−1 + 744 + 196884q + . . .

even lies in Z((q)). Denote for the moment by X1(N) and X1(N, `) the projective
smooth algebraic curves over Q defined by these Q-structures. A natural place to
look for Galois representation of GQ is the étale cohomology of these curves. (Recall
that in the case of curves, a pocket substitute for the étale homology is provided
by the Tate-module of the Pic0 of the curve) Recall also the étale-Betti comparison
theorem

H1
et(X1(N)Q, Qp)

∼→ H1
et(X1(N)C, Qp)

∼→ H1(X1(N)(C), Q)⊗Q Qp.

If we fix an embedding ιp : Q → Qp, it induces an isomorphism

H1
et(X1(N)Q, Qp) := H1

et(X1(N)Q, Qp)⊗Qp Qp
∼→ H1(X1(N)(C), Q)⊗Q Qp.

These isomorphisms commute with correspondences on X1(N) defined over Q.
As we shall see below, the natural maps X1(N, `)(C) → X1(N)(C) defined above
are actually defined over Q, hence so are the geometric Hecke-correspondences T`.
It follows that if f is as in Prop.

defVf
0.2, and if ιpι

−1
∞ : E → Qp induces the place λ of

E, and if
Vf,λ ⊂ H1

et(X1(N)Q, Qp)

3In general, if a complex algebraic curve is defined over Q, there may well be non-isomorphic
Q-structure: for instance, the projective plane conics x2 + y2 + z2 = 0 and x2 − y2 + z2 = 0 are
non isomorphic over Q (the first having no rational point) but they are over C.

4If K is the field of meromorphic functions on X1(N)(C) say, a Q-structure of K is a finitely
generated subfield k such that k ⊗Q C = K.
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denotes the biggest subspace over which each T` with (`, N) acts by multiplication by
a` (or more precisely by ιpι

−1
∞ (a`)), then the comparison theorem étale-Betti induces

an isomorphism
Vf,λ

∼→ Vf ⊗Q Qp,

and in particular, Vf,λ has dimension 2 over Qp. The Galois action of GQ on
H1

et(X1(N)Q, Qp) commutes with all the Hecke correspondences defined over Q, thus
Vf,λ is stable by GQ.

Definition 0.3. Define ρf,λ as the Galois representation of GQ on Vf,λ.

It remains to show that ρf,λ has the required properties. We already know that,
as any geometric Galois representation, it is unramified outside some finite set S.
The statement asserts that S may be reduced to the set of divisors of Np∞. It is
enough to show that X1(N) has good reduction outside N , which is not obvious at
all from the definition, but true (Igusa). This property will be included in the next
(admitted) statement.

Step 4: Arithmetic moduli of elliptic curves. Recall that if E is a complex elliptic
curve, then E ' C/Λ for some lattice Λ ⊂ C which is unique up to multiplication
by λ ∈ C∗. For τ ∈ H, set Eτ = C/(Z + τZ) and Pτ = 1/N ∈ Eτ (it is a point
of order N). The Riemann surface Y1(N)(C) parameterizes complex elliptic curves
equipped with a point of order N :

lemmarep Lemma 0.4. The map τ 7→ (Eτ , Pτ ) induces a bijection between Y1(N)(C) and
the set of isomorphism classes of pairs (E, P ) with E a complex elliptic curve and
P ∈ E a point of order N .

We leave this statement as an exercise to the reader. By definition, an (iso)morphism
(E, P ) → (E ′, P ) is an (iso)morphism E → E ′ sending P to P ′. Similarily, one can
show that for (`, N) = 1, Y1(N, `)(C) parameterizes the isomorphism classes of
triples (E, P, H) where E is an elliptic curve, P ∈ E a point of order N , and H ⊂ E
a subgroup of order `. From this point of view, the Hecke correspondence T` is the
transpose of the map

Y1(N)(C) → Div(Y1(N)(C)), (E, P ) 7→
∑
H

[(E/H, (P + H)/H)],

where H runs over the ` + 1 sugroups of E of order `.

It is an important fact that whenever N ≥ 4, the moduli properties above of
complex modular curves extend to their Q-structures defined above, which actually
gives another way to see this Q-structure. This actually extends beautifully over
Z. For all of this we refer to the book of Katz-Mazur “Arithmetic moduli of elliptic
curves" (other useful references : Deligne-Rapoport paper in “Modular functions in
1-variables II", Hida "Geometric modular forms and elliptic curve"). We give below
a brief survey of what we shall need from this book.

If S is a scheme, an elliptic curve over S (understand : “a family of elliptic curves
parameterized by S") is a proper smooth morphism E → S equipped with a section
O ∈ E(S) such that for any point s ∈ S, the fiber Es is an elliptic curve over the
residue field k(s) with neutral element O×S s. If E is such an elliptic curve, it may
be given a structure a commutative S-group scheme over E with neutral element 0
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in a natural way, which coincides over the fibers of S with the group law of elliptic
curves encountered before. For any N ≥ 1 its N -torsion E[N ] is a finite flat group
scheme over S of degree N2, which is étale if and only if N ∈ O(S)×. We refer to
Fargues’ lectures for the basics about finite flat commutative group schemes.

Denote by F the contravariant functor from schemes over Z[1/N ] to sets, where
F (S) is the set of isomorphism classes of pairs (E, P ) where E is an elliptic curve
over S and P : µN → E[N ] an embedding of S-group schemes. We also denote by
F` the similar functor parameterizing isomorphism classes of triples (E, P, H) where
H is furthermore a finite flat S-subgroup of E[`] of order `.

Theorem 0.5. (Shimura, Igusa, Deligne-Rapoport, Katz-Mazur, Drinfeld). As-
sume N ≥ 5. The functor F is representable by a smooth affine curve Y1(N) over
Z[1/N ] whose complex points are isomorphic to the Riemann surface Y1(N)(C) in-
troduced above in a compatible way with lemma

lemmarep
0.4. This scheme Y1(N) is an open

subscheme of a natural proper smooth curve X1(N) over Z[1/N ] ("theory of the Tate
curve"), and whose complex points are isomorphic to the Riemann surface X1(N)(C)
introduced above.

Similarily, if (`, N) = 1, then F` is representable by a flat affine curve Y1(N, `)
over Z[1/N ], whose complex points are isomorphic to the Riemann surface Y1(N, `)(C)
introduced above (again in a compatible way with the identification above for the C-
points). This scheme Y1(N, `) is an open subscheme of a natural proper flat curve
X1(N, `) over Z[1/N ] (idem), which is smooth over Z[1/N`], and whose complex
points are isomorphic to the Riemann surface X1(N, `)(C) introduced above.

The morphisms F` → F , defined by (E, P, H) 7→ (E, P ) and (E, P, H) 7→
(E/H, (P + H)/H), extend to finite flat morphisms X1(N, `) → X1(N). In partic-
ular the geometric Hecke correspondence T` extends to a finite flat correspondence
on X1(N) over Z[1/N ].

We take all of this as a (rather heavy) black-box. It is understood that the
modular curves over Z[1/N ] defined by this theorem coincide with our previous
X1(N) and X1(N, `) when pulled-back to Q. Let us stress that the most difficult
part of this statement is to prove the representability of F and F`. It is then
comparatively easy to check for instance that X1(N) is a smooth curve over Z[1/N ]
(so that X1(N)Q has good reduction outside the primes dividing N).

Till now, we have defined ρf,λ and explained why it is unramified outside Np∞.
Indeed, by property (i) and (iii) and Example (iii) of the paragraph on étale coho-
mology there are natural isomorphisms for (`, Np) = 1 :

H1
et(X1(N)Q, Qp)|GF`

∼→ H1
et(X1(N)F`

, Qp)
∼→ HomZp(Tp(X1(N)F`

), Qp)

and these isomorphisms commute with the geometric T` correspondences (this uses
that T` is finite flat over Z[1/N ] for the commutation with the Grothendieck’s base
change theorems). In particular,

almostfini (0.2) (V ∨
f,λ)|GF`

= (Tp(X1(N))⊗Zp Qp)[f ]

where the [f ] on the right means "the biggest subspace over which all each T`’s act by
multiplication by ιpι

−1
∞ a`". It makes now sense to talk about det(1− TρE,λ(Frob`))

for ` prime to Np.
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Step 5. Eichler-Shimura’s congruence relation. Fix an ` prime to Np. The
curve X1(N) has a natural action of (Z/NZ)×, usually denoted by d 7→ 〈d〉, given
on the moduli problem F by raising the µN -point P to the power d. On the C-points,
it is simply induced by the left action of Γ0(N)/Γ1(N) on X1(N).

Theorem 0.6. (Eichler-Shimura) On Pic(X1(N)F`
) we have

T` = frob` + `〈`〉frob−1
` .

Let C be a projective smooth algebraic curve over F`. Recall that there is a
geometric Frobenius endomorphism Fr` : C → C which is finite, purely insepa-
rable, of degree ` (it is just raising to the `-th power on functions). The action
induced by Fr` on C(F ) coincides with the natural one of frob`, so the correspon-
dence (id, Fr`) : C → C is the natural endomorphism frob` on Div(C) and Pic0(C).
Its dual correspondence Fr∨` = (Fr`, id) acts then via ` Fr−1

` on these spaces.

Assume now that C = X1(N)F`
. By the main theorem of Step 4, Y1(N)(F`) is

in natural bijection with pairs (E, P ) where E is an elliptic curve over F` and P :
µN(F`) → E(F`)[N ] a Z[GF`

]-equivariant embedding. Moreover, the correspondence
T` acts on Div(Y1(N)F`

) by the formula

(E, P ) 7→
∑
H

(E/H, (P + H)/H)

where H runs over the ` + 1 subgroup schemes of E[`]. By (P + H)/H we simply
mean the composite of P with the natural isomorphism E(F`)[N ] → (E/H)(F`)[N ].

Let Dord ⊂ Div(C) be the subgroup generated by the points in C(F`) which are
in Y1(N), so of the form (E, P ), and such that furthermore E is an ordinary elliptic
curve. We refer to Silverman’s book for the basics about ordinary elliptic curves.
Recall that all but finitely many points of C(F`) (omitting cusps as well) have this
form. As any divisor on a curve is always linearly equivalent to a divisor omitting
any given finite set of points, it follows that the natural map

Dord → Pic(C)

is surjective. It is thus enough to check Eichler-Shimura’s relation on the free abelian
group Dord.

Fix E an ordinary elliptic curve over F`. Recall that [`] : E → E has degree
`2, and inseparable degree ` in this case. The group scheme E[`] has exactly one
connected subgroup of order ` (isomorphic to µ`), namely H := E[`]0 = the kernel
of the Frobenius map

Fr` : E −→ E(`) := E ×F`
F`

the latter scalar extension being given by frobF`
(it just amounts to raising the

coefficients of a Weierstrass equation of E to the power ` to get E(`)). In particular,
Fr` induces an isomorphism E/H

∼→ E(`), sending any µN -point P on the point
P (`) := P ×F`

F` → E(`). In other words

[(E/H, (P + H)/H)] = frob`[(E, P )] if H = E[p]0.

The ordinary elliptic curve E has exactly ` subgroups of order ` different from
E[`]0, which are all étale subgroups. For each such subgroup, say H, consider the
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associated factorization of the multiplication by ` :

[`] : E
can→ E/H

j→ E.

Then j is finite and purely inseparable of degree `, so it necessarily factors as

E/H
Fr`→ (E/H)(`) j′→ E,

as so does any inseparable morphism of degree ` between two projective smooth
curves over F` (see e.g. Hartschorne’s book), and j′ is an isomorphism. If P is a
µN -point of E, then j′ sends the point Fr` o can(P ) = ((P + H)/H)(`) to [`]P . It
follows that

frob`[(E/H, (P + H)/H)] = 〈`〉[(E, P )]

whenever H is étale of order `, which concludes the proof as there are ` such sub-
groups, and 〈`〉 is defined over F` hence commutes with frob−1

` . �

Remark. Let E be an elliptic curve over Q` with good ordinary reduction
E over F`. If H ⊂ E(Q`)[`] is a subgroup of order `, the analysis above may be
reformulated (say forgetting the µN -points) as a congruence in F` :

j(E/H) ≡ j(E)` or j(E/H) ≡ j(E)`−1

the first case occuring iff H reduces to E[`]0. (This makes sense as if E has good
reduction over Q` then j(E) ∈ Z` and this property is preserved under isogenies) For
this reason, the Eichler-Shimura’s theorem is often called the congruence relation.

Step 6. End of the proof. By property (MF1) of modular forms, the operators
〈d〉 act by multiplication by ε(`) on Vf . A complement to the main theorem of
Step 4 is that these isomorphisms of Y1(N) actually extend to isomorphisms of
X1(N) over Z[1/N ]. It follows that they commute with all the various kind of
comparison theorems used above, hence that 〈`〉 acts by multiplication by ε(`) on
Vf,λ for (`, N) = 1 (we omit the ιpι

−1
∞ ). As T` acts on Vf,λ by multiplication by a`,

the Eichler-Shimura theorem reads on Vf,λ :

frob2
` − a`frob` + `ε(`) = 0, (`, Np) = 1.

It only remains to explain why the traces of Fr` = frob` and of ε(`)Fr∨` = `ε(`)frob−1
`

coincide on Vf,λ. (to be continued)


