GAËTAN CHENEVIER

1. The Robba Ring

Let¹ L be a finite extension of \mathbb{Q}_p , and let \mathcal{R}_L be the Robba ring with coefficients in L, *i.e.* the ring of power series

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z-1)^n, \ a_n \in L$$

converging on some annulus of \mathbb{C}_p of the form $r(f) \leq |z-1| < 1$, equipped with its natural *L*-algebra topology. It is a domain, but it is not noetherian.

Theorem 1 (Lazard, see e.g. [Berger1] prop. 4.12).

(i) Any finitely generated ideal of \mathcal{R}_L is principal.

(ii) Any finite type submodule of \mathcal{R}_L^n admits elementary divisors.

Remark 1. Part (i) implies that finite type, torsion free, \mathcal{R}_L -modules are free. Part (ii) implies e.g. that if $M \subset N := \mathcal{R}_L^n$ is of finite type over \mathcal{R}_L , then the saturation of M in N (that is $M^{\text{sat}} = \{x \in N, \exists f \neq 0 \in \mathcal{R}_L, fx \in M\}$) is finite type over \mathcal{R}_L with the same rank as M.

The ring \mathcal{R}_L is equipped with commuting, *L*-linear, continuous actions of φ and $\Gamma := \mathbb{Z}_p^*$ defined by

$$\varphi(f)(z) = f(z^p), \quad \gamma(f)(z) = f(z^{\gamma}).$$

(note that here $z \in \mathbb{C}_p$ satisfies |z - 1| < 1). Set

$$t := \log(z) := \sum_{n \ge 1} (-1)^{n+1} \frac{(z-1)^n}{n} \in \mathcal{R}_L.$$

Then $\varphi(t) = pt$ and $\gamma(t) = \gamma t$.

Lemma 1 ([Colmez2] rem. 4.4). The finitely generated ideals of \mathcal{R}_L stable by φ and Γ are the $t^i \mathcal{R}_L$, $i \geq 0$ an integer.

2. (φ, Γ) -modules over \mathcal{R}_L

Definition 1. A (φ, Γ) -module over \mathcal{R}_L is a finite free \mathcal{R}_L -module D equipped with commuting, \mathcal{R}_L -semilinear, continuous² actions of φ and Γ , and such that $\mathcal{R}\varphi(D) = D$.

 $^{^{1}}$ Most of these notes have been extracted verbatim from the chapter 2 of [BelChe].

²It means that for any choice of a free basis $e = (e_i)_{i=1...d}$ of D as \mathcal{R}_L -module, the matrix map $\gamma \mapsto M_e(\gamma) \in \operatorname{GL}_d(\mathcal{R}_L)$, defined by $\gamma(e_i) = M_e(\gamma)(e_i)$, is a continuous function on Γ . If $P \in \operatorname{GL}_d(\mathcal{R}_L)$, then $M_{P(e)}(\gamma) = \gamma(P)M_e(\gamma)P^{-1}$, hence it suffices to check it for a single basis.

Works of Fontaine, Cherbonnier-Colmez, and Kedlaya, allow to define a \otimes equivalence D_{rig} between the category of *L*-representations of $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ and *étale* (φ, Γ) -modules over \mathcal{R}_L . By [Berger1, §3.4], $D_{\text{rig}}(V)$ can be defined in Fontaine's style: there exists a topological ring *B* (denoted $B^{\dagger, \text{rig}}$ there) equipped with actions of $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ and φ and such that $B^{H_p} = \mathcal{R}$, and

$$D_{\mathrm{rig}}(V) := (V \otimes_{\mathbb{O}_p} B)^{H_p}.$$

Here, H_p is the kernel of the cyclotomic character $\chi : \operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \longrightarrow \mathbb{Z}_p^*$, inducing an isomorphism $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)/H_p \xrightarrow{\sim} \Gamma$.

Theorem 2. ([Colmez2, prop. 2.7]) The functor D_{rig} induces an \otimes -equivalence of categories between finite dimensional, continuous, L-representations of $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ and étale (φ, Γ) -modules over \mathcal{R}_L . We have $\operatorname{rk}_L(V) = \operatorname{rk}_{\mathcal{R}_L}(D_{\operatorname{rig}}(V))$.

Remark 2. A (φ, Γ) -module is étale if its underlying φ -module has slope 0 in the sense of Kedlaya (see [Kedlaya, Theorem 6.10] or [Colmez2, §2.1]). Kedlaya defines some notion of slopes for φ -modules over \mathcal{R}_L (such that $\varphi(M)\mathcal{R}_L = M$) and proves that any such module has a canonical filtration by isoclinic φ -submodules whose slopes are strictly increasing ([Kedlaya, Theorem 6.10]). In the (φ, Γ) -module situation, this φ filtration turns out to be stable by Γ (see [Berger2] part IV).

3. (φ, Γ) -modules of rank 1 and their extensions, following Colmez.

Let $\delta : \mathbb{Q}_p^* \longrightarrow L^*$ be a continuous character. Colmez defines in [Colmez2, §0.1], the (φ, Γ) -module $\mathcal{R}_L(\delta)$ which is \mathcal{R}_L as \mathcal{R}_L -module but equipped with the \mathcal{R}_L -semilinear actions of φ and Γ defined by

$$\varphi(1) := \delta(p), \ \gamma(1) := \delta(\gamma), \forall \gamma \in \Gamma,$$

Recall that by class field theory the cyclotomic character χ extends uniquely to an isomorphism $\theta : W^{ab}_{\mathbb{Q}_p} \xrightarrow{\sim} \mathbb{Q}_p^*$ sending the geometric Frobenius to p, where $W_{\mathbb{Q}_p} \subset \operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ is the Weil group of \mathbb{Q}_p . We may then view any δ as above as a continuous homomorphism $W_{\mathbb{Q}_p} \longrightarrow L^*$. Such a homomorphism extends continuously to $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ iff $v(\delta(p))$ is zero, and in this case we see that

$$\mathcal{R}_L(\delta) = D_{\mathrm{rig}}(\delta \circ \theta).$$

Theorem 3. [Colmez2, Thm 0.2]

- (i) Any (φ, Γ) -module free of rank 1 over \mathcal{R}_L is isomorphic to $\mathcal{R}_L(\delta)$ for a unique δ . Such a module is isocline of slope $v(\delta(p))$.
- (ii) $Ext_{(\varphi,\Gamma)}(\mathcal{R}_L(\delta_2), \mathcal{R}_L(\delta_1))$ has L-dimension 1 except when $\delta_1 \delta_2^{-1} = x^{-i}$ or $\chi.x^i$ for $i \ge 0$ an integer, in which case it has dimension 2.

Here, $x : \mathbb{Q}_p^* \longrightarrow L^*$ is the inclusion, and $\chi = x|x|$ is the character such that $\chi(p) = 1$ and $\chi_{|\Gamma} = x_{|\Gamma}$ is the natural inclusion. Colmez computes also Kedlaya's slopes of such extensions (see Rem. 0.3 of [Colmez2]). An important fact is that the extension can be étale (hence coming from a *p*-adic representation) even if the $\mathcal{R}_L(\delta_i)$'s are not. Some necessary conditions of etaleness are that $v(\delta_1(p)) \ge 0$ and $v(\delta_1(p)\delta_2(p)) = 0$ (étalness of the determinant), these conditions are also sufficient in most cases (but see *loc. cit.*).

Definition 2. Let *D* be a (φ, Γ) -module of rank *d* over \mathcal{R}_L and equipped with a strictly increasing filtration $(\operatorname{Fil}_i(D))_{i=0...d}$:

$$\operatorname{Fil}_0(D) := \{0\} \subsetneq \operatorname{Fil}_1(D) \subsetneq \cdots \subsetneq \operatorname{Fil}_i(D) \subsetneq \cdots \subsetneq \operatorname{Fil}_{d-1}(D) \subsetneq \operatorname{Fil}_d(D) := D,$$

of (φ, Γ) -submodules which are free and direct summand as \mathcal{R}_L -modules. We call such a D a triangular (φ, Γ) -module over \mathcal{R}_L , and the filtration $\mathcal{T} := (\operatorname{Fil}_i(D))$ a triangulation of D over \mathcal{R}_L .

Following Colmez, we shall say that a (φ, Γ) -module which is free of rank d over \mathcal{R}_L is triangulable if it can be equipped with a triangulation \mathcal{T} ; we shall say that an L-representation V of $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ is triangulable if $D_{\operatorname{rig}}(V)$ is triangulable.

Let D be a triangular (φ, Γ) -module. By theorem. 3 (i), each

 $\operatorname{gr}_i(D) := \operatorname{Fil}_i(D)/\operatorname{Fil}_{i-1}(D), \ 1 \le i \le d,$

is isomorphic to $\mathcal{R}_L(\delta_i)$ for some unique $\delta_i : W_{\mathbb{Q}_p} \longrightarrow L^*$. It makes then sense to define the *parameter of the triangulation* to be the continuous homomorphism

$$\delta := (\delta_i)_{i=1,\cdots,d} : \mathbb{Q}_p^* \longrightarrow (L^*)^d$$

4. *p*-ADIC HODGE THEORY OF (φ, Γ) -MODULES, FOLLOWING BERGER.

Let D be a fixed (φ, Γ) -module. When $D = D_{rig}(V)$ for some p-adic representation V, D uniquely determines V hence it makes sense to ask whether we can directly recover from D the usual Fontaine's functors of V. The answer is yes and achieved by Berger's work ([Berger1], [Berger2]). It turns out that it makes sense to define these Fontaine functors for any (φ, Γ) -module over \mathcal{R}_L (i.e. not necessarily étale). In what follows, we may and do assume that $L = \mathbb{Q}_p, \mathcal{R} := \mathcal{R}_{\mathbb{Q}_p}$.

Let us introduce, for $r > 0 \in \mathbb{Q}$, the \mathbb{Q}_p -subalgebra

$$\mathcal{R}_r = \{ f(z) \in \mathcal{R}, \ f \text{ converges on the annulus } p^{-\frac{1}{r}} \le |z-1| < 1 \}.$$

Note that \mathcal{R}_r is stable by Γ , and that φ induces a map $\mathcal{R}_r \longrightarrow \mathcal{R}_{pr}$ when $r > \frac{p-1}{p}$ which is étale of degree p. The following lemma is [Berger2, thm 1.3.3]:

Lemma 2. Let D be a (φ, Γ) -module over \mathcal{R} . There exists a $r(D) > \frac{p-1}{p}$ such that for each r > r(D), there exists a unique finite free, Γ -stable, \mathcal{R}_r -submodule D_r of D such that $\mathcal{R} \otimes_{\mathcal{R}_r} D_r \xrightarrow{\sim} D$ and that $\mathcal{R}_{pr}D_r$ has a \mathcal{R}_{pr} -basis in $\varphi(D_r)$. In particular, for r > r(D),

- (i) for $s \geq r$, $D_s = \mathcal{R}_s D_r \xrightarrow{\sim} \mathcal{R}_s \otimes_{\mathcal{R}_r} D_r$,
- (ii) φ induces an isomorphism $\mathcal{R}_{pr} \otimes_{\mathcal{R}_r,\varphi} D_r \xrightarrow{\sim} D_{pr} \xrightarrow{\sim} \mathcal{R}_{pr} \otimes_{\mathcal{R}_r} D_r$.

If n(r) is the smallest integer n such that $p^{n-1}(p-1) \ge r$, then for $n \ge n(r)$ the primitive p^n -th roots of unity lie in the annuli $p^{-\frac{1}{r}} < |z-1| < 1$ and t is a uniformizer at each of them so that we get by localization and completion at their underlying closed point a natural map

$$\mathcal{R}_r \longrightarrow K_n[[t]], \ n \ge n(r), \ r > r(D),$$

which is injective with t-adically dense image, where $K_n := \mathbb{Q}_p(\sqrt[p^n]{1})$. For any (φ, Γ) -module over \mathcal{R} , we can then form for r > r(D) and $n \ge n(r)$ the space

$$D_r \otimes_{\mathcal{R}_r} K_n[[t]],$$

which is a $K_n[[t]]$ -module free of rank $\operatorname{rk}_{\mathcal{R}}(D)$ equipped with a semi-linear continuous action of Γ . By Lemma 2 (i), this space does not depend on the choice of rsuch that $n \ge n(r)$. Moreover, for a fixed r, φ induces by the same lemma part (ii) $- \otimes_{\mathcal{R}_{pr}} K_{n+1}[[t]]$ a Γ -equivariant, $K_{n+1}[[t]]$ -linear, isomorphism

$$(D_r \otimes_{\mathcal{R}_r} K_n[[t]]) \otimes_{t \mapsto pt} K_{n+1}[[t]] \longrightarrow D_r \otimes_{\mathcal{R}_r} K_{n+1}[[t]].$$

(Note that the map $\varphi : \mathcal{R}_r \longrightarrow \mathcal{R}_{pr}$ induces the inclusion $K_n[[t]] \longrightarrow K_{n+1}[[t]]$ such that $t \mapsto pt$.)

We use this to define functors $\mathcal{D}_{\text{Sen}}(D)$ and $\mathcal{D}_{dR}(D)$, as follows. Let $K_{\infty} = \bigcup_{n\geq 0} K_n$. For $n \geq n(r)$ and r > r(D), we define a K_{∞} -vector space with a semilinear action of Γ by setting

$$\mathcal{D}_{\mathrm{Sen}}(D) := (D_r \otimes_{\mathcal{R}_r} K_n) \otimes_{K_n} K_{\infty}.$$

By the discussion above, this space does not depend of the choice of n, r. In the same way, the \mathbb{Q}_p -vector spaces

$$\mathcal{D}_{\mathrm{dR}}(D) := (K_{\infty} \otimes_{K_n} K_n((t)) \otimes_{\mathcal{R}_r} D_r)^{\Gamma},$$

 $\operatorname{Fil}^{i}(\mathcal{D}_{\mathrm{dR}}(D)) := (K_{\infty} \otimes_{K_{n}} t^{i} K_{n}[[t]] \otimes_{\mathcal{R}_{r}} D_{r})^{\Gamma} \subset \mathcal{D}_{\mathrm{dR}}(D), \ \forall i \in \mathbb{Z},$

are independent of $n \ge n(r)$ and r > r(D). As $K_{\infty}((t))^{\Gamma} = \mathbb{Q}_p$, $\mathcal{D}_{dR}(D)$ so defined is a finite dimensional \mathbb{Q}_p -vector-space whose dimension is less than $\mathrm{rk}_{\mathcal{R}}(D)$, and $(\mathrm{Fil}^i(\mathcal{D}_{dR}(D)))_{i\in\mathbb{Z}}$ is a decreasing, exhausting, and saturated, filtration on $\mathcal{D}_{dR}(D)$.

We end by the definition of $\mathcal{D}_{crys}(D)$. Let

$$\mathcal{D}_{\operatorname{crvs}}(D) := D[1/t]^{\Gamma}.$$

It has an action of $\mathbb{Q}_p[\varphi]$ induced by the one on D[1/t]. It has also a natural filtration defined as follows. Choose r > r(D) and $n \ge n(r)$, there is a natural inclusion

$$\mathcal{D}_{\mathrm{crys}}(D) \longrightarrow \mathcal{D}_{\mathrm{dR}}(D)$$

and we denote by $(\varphi^n(\operatorname{Fil}^i(\mathcal{D}_{\operatorname{crys}}(D)))_{i\in\mathbb{Z}}$ the filtration induced from the one on $\mathcal{D}_{\operatorname{dR}}(D)$. By the analysis above, this defines a unique filtration $(\operatorname{Fil}^i(\mathcal{D}_{\operatorname{crys}}(V)))_{i\in\mathbb{Z}}$, independent of the above choices of n and r. We summarize some of Berger's results ([Berger1, thm. 0.2 and §5.3], [Berger2], [Colmez1, prop. 5.6])) in the following proposition.

Theorem 4. Let V be a \mathbb{Q}_p -representation of $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$, and

$$* \in \{crys, dR, Sen\}.$$

Then $\mathcal{D}_*(D_{\mathrm{rig}}(V))$ is canonically isomorphic to $D_*(V)$.

Definition 3. We will say that a (not necessarily étale) (φ, Γ) -module D over \mathcal{R} is crystalline (resp. de Rham) if $\mathcal{D}_{crys}(D)$ (resp. $\mathcal{D}_{dR}(D)$) has rank $rk_{\mathcal{R}}(D)$ over \mathbb{Q}_p . The Sen polynomial of D is the one of the semi-linear Γ -module $\mathcal{D}_{Sen}(D)$.

Here is an example of application to triangular (φ, Γ) -modules. Let D be a triangular (φ, Γ) -module of rank d over \mathcal{R}_L , whose parameter is $(\delta_i)_{i=1,\dots,d}$. Define the weight $\omega(\delta) \in L$ of any continuous character $\delta : \mathbb{Q}_p^* \longrightarrow L^*$ by the formula

$$\omega(\delta) := -\left(\frac{\partial \delta_{|\Gamma}}{\partial \gamma}\right)_{\gamma=1} = -\frac{\log(\delta(1+p^2))}{\log(1+p^2)} \in L.$$

Proposition 1. [BelChe, prop. 2.3.3, 2.3.4] Let D be a triangular (φ, Γ) -module over \mathcal{R}_L with parameter $(\delta_i)_{i=1,\dots,d}$.

- (i) The Sen polynomial of $D_{\text{Sen}}(D)$ is $\prod_{i=1}^{d} (T \omega(\delta_i))$.
- (ii) Assume that each $\omega(\delta_i) \in \mathbb{Z}$ and that the sequence $\omega(\delta_1), \omega(\delta_2), \ldots, \omega(\delta_d)$ is strictly increasing. Then D is de Rham.

References

- [BelChe] J.Bellaïche, G. Chenevier, *p-adic families of Galois representations*, chapter 2, preprint (see my home page).
- [Berger1] L. Berger, Représentations p-adiques et équations différentielles, Inv. Math. 148 (2002), 219–284.
- [Berger2] L. Berger, Équations différentielles p-adiques et (φ, N) -modules filtrés, preprint (see his homepage).
- [Colmez1] P. Colmez, Les conjectures de monodromie p-adiques, in Sém. Bourbaki 2001-02, exp. 897, Astérisque 290 (2003), 53–101.
- [Colmez2] P. Colmez, Série principale unitaire pour $GL_2(\mathbb{Q}_p)$ et représentations triangulines de dimension 2, preprint.
- [Kedlaya] K. Kedlaya, A p-adic local monodromy theorem, Annals of Mathematics 160 (2004), 93–184.