On the dimension of spaces of Siegel cuspforms for $\operatorname{Sp}_{2 g}(\mathbb{Z})$

Gaëtan Chenevier
CNRS, Orsay University

November 2, 2019

Dimension formulas

Let $g \geq 1$ and set $\Gamma_{g}=\operatorname{Sp}_{2 g}(\mathbb{Z})$.
Define $\mathrm{S}_{k}\left(\Gamma_{g}\right)$ and $\mathrm{S}_{\underline{k}}\left(\Gamma_{g}\right)$ respectively as the spaces of cuspidal Siegel modular forms for Γ_{g} which are either scalar-valued of weight $k \in \mathbb{Z}$, or more generally vector-valued of weight $\underline{k}=\left(k_{1}, k_{2}, \ldots, k_{g}\right)$ in \mathbb{Z}^{g} with $k_{1} \geq k_{2} \geq \cdots \geq k_{g}$.

Classical problem : Determine $\operatorname{dim} \mathrm{S}_{\underline{k}}\left(\Gamma_{g}\right)$ (formula ?).
Only general constraints: $\mathrm{S}_{\underline{k}}\left(\Gamma_{g}\right)=0$ unless $\sum_{i} k_{i} \equiv 0 \bmod 2$ (easy) and $k_{g} \geq g / 2$ (Freitag, Reznikoff, Weissauer).

Known results : $g=1$ and $g=2$

For $g=1$, classical modular forms for $\Gamma_{1}=\mathrm{SL}_{2}(\mathbb{Z})$: well known.
Assume $g=2$, so $k_{1}+k_{2}$ is even and $k_{2} \geq 1$.
Formula in the scalar-valued case due to Igusa (1962) and in the vector-valued case by Tsushima (1984) for $k_{2} \geq 5$.

Tsushima's formula also holds for $k_{2} \geq 3$, as was conjectured by Ibukiyama, and proved later by Petersen and Taïbi (2015).

Known results : $g=2$ (continued) and $g=3$

We have $\mathrm{S}_{\underline{k}}\left(\Gamma_{2}\right)=0$ for $k_{2}=1$ (Ibukiyama, Skoruppa), but $\operatorname{dim} \mathrm{S}_{\underline{k}}\left(\Gamma_{2}\right)$ still unknown for $k_{2}=2$!
(Known to vanish for all $k_{1} \leq 54$ by recent results of Clery, van de Geer and Ch.-Taïbi.)

Many other results known for $g \leq 2$ with higher level that I don't mention here!

For $g=3$, formula in the scalar-valued case due to Tsuyumine (1984), only quite recently a conjectural formula proposed for $k_{3} \geq 4$ by J. Bergström, C. Faber \& G. van der Geer (2011).

Taïbi's thesis (2015)

Building on work of Ch.-Renard, Taïbi gives loc. cit. an explicit formula for $\operatorname{dim} \mathrm{S}_{\underline{k}}\left(\Gamma_{g}\right)$ for g arbitrary in the case $k_{g}>g$.

His formula contains some unknown terms, namely certain orbital integrals at torsion elements of split classical groups over \mathbb{Q}_{p}.
Taïbi developed several case-by-case algorithms to compute those terms efficiently with the help of the computer. He was able to evaluate all of them for $g \leq 7$.
Conclusion: Given any $g \leq 7$ and any \underline{k} with $k_{g}>g$ and k_{1} not too big, the computer and Taïbi's implementation returns $\operatorname{dim} \mathrm{S}_{\underline{k}}\left(\Gamma_{g}\right)$ in a few seconds.

This proved BFvdG's conjecture in particular, and much more.

Goal today

Goal: Explain a variant of Taïbi's method which reproves his results in a simpler and comparatively "effortless" way: no direct orbital integrals calculation. (Joint-work with Taïbi on arXiv)

Combining both methods, get also a formula in the case $g=8$.
http://gaetan.chenevier.perso.math.cnrs.fr/levelone/
\longrightarrow tables for $k_{1} \leq 16$ and Tä̈bi's sage scripts allowing computations for general \underline{k} (with $k_{g}>g$ and $g \leq 8$).
Remarks: (a) Other results in [Ch.-Taïbi] include a computation of $\operatorname{dim} S_{k}\left(\Gamma_{g}\right)$ (scalar-valued case) for all $g \geq 1$ in the case $k \leq 13$. I'll show list if time permits.
(b) We do not use any previous computation of dimension of spaces of modular forms, and in the end we seem to recover all known $\operatorname{dim} \mathrm{S}_{\underline{k}}\left(\Gamma_{g}\right)$ (including works of Witt, Poor-Yuen, Nebe-Venkov, Borcherds-Freitag-Weissauer...)

The three main ingredients

1. Arthur's endoscopic classification specified to the level 1 algebraic cuspforms of all split classical groups over \mathbb{Z}, namely $\mathrm{Sp}_{2 g}$ or split SO_{n} over \mathbb{Z}, which are discrete series at the Archimedean place.
2. The " L^{2}-Lefschetz" version of Arthur's trace formula.
3. Non-existence results of certain level 1 "algebraic" cuspforms on GL_{n} (see later).

Let me start with an instructive baby case where (1) plays no role.

A (too complicated) way to determine $\operatorname{dim} \mathrm{S}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$

First basic tool, a trace formula.
Trace formula with simplest geometric side $=$ the one of Arthur's 1989 paper L^{2}-Lefschetz numbers of Hecke operators. Drawback: simplified but still complicated spectral side.

I want to describe this trace formula for any split semisimple group scheme G over \mathbb{Z} and the trivial Hecke operator (giving a "dimension").

In this section, I take $G=\mathrm{PGL}_{2} \simeq \mathrm{SO}_{3}$ and fix $k \geq 2$ even, but also prepare for the general case.

The test function

Let $f=\otimes_{v}^{\prime} f_{v}$ be a smooth c.s. function on $G(\mathbb{A})$, and $d g=\prod_{v} d g_{v}$ a Haar measure on $G(\mathbb{A})$, such that :
(a) $f_{p}=1_{G\left(\mathbb{Z}_{p}\right)}$ and $\operatorname{vol}\left(G\left(\mathbb{Z}_{p}\right), d g_{p}\right)=1$,
(b) $f_{\infty}\left(g_{\infty}\right) d g_{\infty}=$ a signed pseudocoefficient for the discrete series representation D_{k} of weight k for $G(\mathbb{R})\left(=\mathrm{PGL}_{2}(\mathbb{R})\right)$.
Meaning : if U is any tempered unitary irrep. of $G(\mathbb{R})$, then

$$
\operatorname{trace}\left(f_{\infty}\left(g_{\infty}\right) d g_{\infty} \mid U\right)=\left\{\begin{array}{cc}
(-1)^{\frac{1}{2} \operatorname{dim} G(\mathbb{R}) / K_{\infty}}=-1 & \text { if } U \simeq \mathrm{D}_{k} \\
0 & \text { otherwise }
\end{array}\right.
$$

Pseudocoefficients of discrete series exists in general (Clozel-Delorme). Elementary for $\mathrm{PGL}_{2}(\mathbb{R})$ (Harish-Chandra, Duflo-Labesse).

An important warning

If U is a non tempered unitary irrep. of $G(\mathbb{R})$, we may have $\operatorname{trace}\left(f_{\infty}\left(g_{\infty}\right) d g_{\infty} \mid U\right) \neq 0$.
For $G=\mathrm{PGL}_{2}$, only happens for $k=2$ and $\operatorname{dim} U=1$ (trivial or sign) by Bargmann's classification.
Explanation : $f_{\infty}\left(g_{\infty}\right) d g_{\infty}$ has trace 0 in any full principal series, and there is a principal series of $\mathrm{PGL}_{2}(\mathbb{R})$ which is an extension of D_{k} by the finite dimensional rep. $V_{k}:=\operatorname{Sym}^{k-2} \mathbb{C}^{2} \otimes \operatorname{det}^{1-k / 2}$, so

$$
-\operatorname{trace}\left(f_{\infty}\left(g_{\infty}\right) d g_{\infty} \mid \mathrm{D}_{k}\right)=\operatorname{trace}\left(f_{\infty}\left(g_{\infty}\right) d g_{\infty} \mid V_{k}\right)=1
$$

Of course, V_{k} is unitary only for $k=2$.

Spectral side of the trace formula

Define $\mathcal{A}^{2}(G)$ as the space of automorphic forms in the space $L^{2}(G(\mathbb{Q}) \backslash G(\mathbb{A}))$ (square integrable automorphic forms) and set:

$$
\mathrm{T}_{\mathrm{spec}}(G ; k) \stackrel{\text { def }}{=} \operatorname{trace}\left(f(g) d g \mid \mathcal{A}^{2}(G)\right)
$$

Essentially by definition and the above remarks we have

$$
\mathrm{T}_{\text {spec }}\left(\mathrm{PGL}_{2} ; k\right)=-\operatorname{dim} \mathrm{S}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)+\delta_{k, 2}
$$

(sign does not globally contribute in level 1 , by strong approximation and $\left.\operatorname{sign}\left(\mathrm{PGL}_{2}(\mathbb{Z})\right)=\{ \pm 1\}\right)$.

Geometric side

Arthur's paper gives another formula for $\mathrm{T}_{\text {spec }}(G ; k)$, which also depends only on k, and is denoted $\mathrm{T}_{\text {geom }}(G ; k)$.

$$
(\mathrm{ATF}): \quad \mathrm{T}_{\text {spec }}(G ; k)=\mathrm{T}_{\text {geom }}(G ; k)
$$

- For general $G, \mathrm{~T}_{\text {geom }}(G ; k)$ would be a finite sum (of sums) indexed by certain classes of Levi subgroups L of G. Most important term, associated to $L=G$ itself, is called $\mathrm{T}_{\text {ell }}(G ; k)$.
- For PGL_{2}, unique other Levi is \mathbb{G}_{m} and we can show for all k

$$
\mathrm{T}_{\text {geom }}\left(\mathrm{PGL}_{2} ; k\right)=\mathrm{T}_{\text {ell }}\left(\mathrm{PGL}_{2} ; k\right)+1 / 2
$$

It remains to explain the elliptic term $\mathrm{T}_{\text {ell }}(G ; k)$.

Elliptic terms

$$
\mathrm{T}_{\mathrm{ell}}(G ; k) \stackrel{\text { def }}{=} \sum_{\gamma} \operatorname{vol}\left(G_{\gamma}(\mathbb{Q}) \backslash G_{\gamma}(\mathbb{A}), d g_{\gamma}\right) \cdot \mathrm{O}_{\gamma}\left(1_{\mathrm{G}(\widehat{\mathbb{Z}}} \frac{d g}{d g_{\gamma}}\right) \cdot \operatorname{trace}\left(\gamma \mid \mathrm{V}_{k}\right),
$$

where γ runs over the $G(\mathbb{Q})$-conjugacy classes semisimple elements of $G(\mathbb{Q})$ whose $G\left(\mathbb{Q}_{p}\right)$-conjugacy class meets $G\left(\mathbb{Z}_{p}\right)$ for each prime p, and with γ_{∞} compact (or better, \mathbb{R}-elliptic).
Recall $G \simeq \mathrm{SO}_{3}$: any such γ has a (degree 3) char. poly. which is a product of cyclotomic polynomials (Kronecker). In particular, any contributing γ has finite order.

Remark: rational ss. conjugacy classes are more complicated for classical groups over \mathbb{Q} than for GL_{n} : infinitely many different classes can have the same char. poly. Nevertheless, only finitely classes contribute non trivially to the sum above.

The masses of G

Each term in $\mathrm{T}_{\text {ell }}(G ; k)$ could be computed easily for $G=\mathrm{PGL}_{2}$, but painful when G is replaced by $\mathrm{Sp}_{2 g}$ or SO_{n} with high g or n : see Taïbi's thesis for algorithms and numerical applications in small rank. We choose not to do so and simply write

$$
\mathrm{T}_{\mathrm{ell}}(G ; k)=\sum_{c \in \mathrm{C}(G)} m_{c} \operatorname{trace}\left(c \mid V_{k}\right)
$$

where $\mathrm{C}(G)$ is the set of $G(\overline{\mathbb{Q}})$-conjugacy classes of finite order elements in $G(\mathbb{Q})$ (this is possible!). Equivalent to give c in $C(G)$ and its char. poly. (a product of cyclo. pol.).
Definition : Call m_{c} the mass of the element c of $\mathrm{C}(G)$.
They are absolute constant, i.e. do not depend on k. We can show $m_{c} \in \mathbb{Q}$ for all c.

$\mathrm{C}\left(\mathrm{PGL}_{2}\right)$

There are 5 possible char. poly.

$$
\phi_{1}^{3}, \phi_{1} \phi_{2}^{2}, \phi_{3} \phi_{1}, \phi_{4} \phi_{1}, \phi_{6} \phi_{1}
$$

hence at most 5 classes, say c_{d} for $d=1,2,3,4,6$ with respective order d. Moreover, for $d>1$ we have

$$
\operatorname{trace}\left(c_{d} \mid V_{k}\right)=\sin (k \pi / d) / \sin (\pi / d)
$$

(must be in \mathbb{Z} for the d above.)

Last key ingredient

Fact: We have $\operatorname{dim} S_{k}\left(\Gamma_{1}\right)=0$ for $k=2,4,6,8,10$.
Assume this fact for the moment. The trace formula for those k leads to the linear system :

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
3 & -1 & 0 & 1 & 2 \\
5 & 1 & -1 & -1 & 1 \\
7 & -1 & 1 & -1 & -1 \\
9 & 1 & 0 & 1 & -2
\end{array}\right] \cdot\left[\begin{array}{l}
m_{c_{1}} \\
m_{c_{2}} \\
m_{c_{3}} \\
m_{c_{4}} \\
m_{c_{6}}
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
-1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right] .
$$

Luckily, the matrix on the left-hand side is invertible: we find $m_{c_{1}}=-\frac{1}{12}, m_{c_{2}}=\frac{1}{4}, m_{c_{3}}=\frac{1}{3}$ and $m_{c_{4}}=m_{c_{6}}=0$.
Consequence: Recover the classical formula for $\operatorname{dim} \mathrm{S}_{k}\left(\Gamma_{1}\right)$ (for all k), just by proving a few modular forms do not exist.

Remark: Simple explanation for $m_{c_{4}}=m_{c_{6}}=0$ (exercise!).

Proof of the fact, following Mestre

Use an L-function argument first observed by J. F. Mestre in 1986, in the lead of works of Stark, Odlyzko and Serre on discriminant lower bounds for number fields.
Assume $S_{k}\left(\Gamma_{1}\right)$ is nonzero : it contains a nonzero Hecke eigenform $f=\sum_{n \geq 1} a_{n} q^{n}$. Let

$$
\Lambda(s, f)=\Gamma_{\mathbb{C}}(s+(k-1) / 2) \mathrm{L}(s+(k-1) / 2, f)
$$

be its "completed" Hecke L-function. This is an entire function, BVS, with an Euler product and $\Lambda(s, f)=i^{k} \Lambda(1-s, f)$.

Main idea : show that there is no such function for $k<12$ by applying the so-called explicit formula to $\frac{\Lambda^{\prime}}{\Lambda}$.

The "explicit formula" following Weil, Poitou and Mestre Result of a (limit of) contour integration $\frac{1}{2 \pi i} \int_{\mathcal{C}} \frac{\Lambda^{\prime}}{\Lambda}(s) \Phi_{F}(s) d s$ for a suitable test function F. (Draw \mathcal{C}).

For us, $F: \mathbb{R} \rightarrow \mathbb{R}$ is any even, compactly supported, function of class \mathcal{C}^{2}, and define Φ_{F} (an entire complex function) by

$$
\Phi_{F}(s)=\int_{\mathbb{R}} F(t) e^{(s-1 / 2) t} d t=\widehat{F}\left(\frac{1 / 2-s}{2 i \pi}\right)
$$

Set $L^{\prime} / L(s)=\sum_{p^{k}} b_{p^{k}} p^{-k s}$. Using Cauchy's residue theorem + functional equation + Euler product for Res $>1+$ some horizontal estimates, get for each test function F :

$$
\begin{gathered}
\int_{\mathbb{R}} \frac{\Gamma_{\mathbb{C}}^{\prime}}{\Gamma_{\mathbb{C}}}(k / 2+2 i \pi t) \widehat{F}(t) \mathrm{d} t+\sum_{p^{k}} b_{p^{k}} \frac{\log p}{p^{k / 2}} F\left(\log p^{k}\right) \\
=\frac{1}{2} \sum_{0 \leq \operatorname{Re} \rho \leq 1} \operatorname{Re} \Phi_{F}(\rho) \operatorname{ord}_{s=\rho} \Lambda(s)
\end{gathered}
$$

Basic inequality

Assume $F \geq 0$, $\operatorname{Re} \Phi_{F}(s) \geq 0$ for $0 \leq \operatorname{Re} s \leq 1$, and F vanishes outside $[-\log 2, \log 2]$. For each such F we get the (surprisingly sharp in practice) basic inequality:

$$
(B I): \quad \int_{\mathbb{R}} \frac{\Gamma_{\mathbb{C}}^{\prime}}{\Gamma_{\mathbb{C}}}(k / 2+2 i \pi t) \hat{F}(t) \mathrm{d} t \geq 0
$$

Functions used in practice : recall Odlyzko's function $u(x)=$ twice square convolution of $\cos (\pi x) 1_{|x| \leq 1 / 2}$. Then

$$
F_{\lambda}(x)=u(x / \lambda) / \cosh (x / 2)
$$

satisfies the 2 positivity assumptions, with support in $[-\lambda, \lambda]$.
Numerical application : for $F=F_{\log 2}$, LHS of (BI) is increasing when k grows : it is $\simeq-0.07$ for $k=10$ and $\simeq 0.06$ for $k=12$. \square

Higher dimensional variants

Very general method: applies to arbitrary L-functions satisfying suitable analytic properties such as the standard L-functions of cuspidal automorphic representations of GL_{m}.

As observed by Serre and Miller in the past, even more powerful when applied to the Rankin-Selberg L-function : as the $b_{p^{k}}$ are ≤ 0, we may use F_{λ} with arbitrary λ.

Experience shows that trivial looking inequalities such as (BI) are miraculously accurate in small weights and conductor.

Industrial applications: With Lannes and Taïbi, we have used this method (with important improvements that I will ignore here) to prove the inexistence of several thousands of automorphic eigenforms for $\mathrm{GL}_{m}(\mathbb{Z})$ with say $m \leq 17$ and specific Archimedean components (or Γ-factors).

Selfdual level 1 algebraic cusp forms on GL_{m}

Consider cuspidal automorphic rep's. π of GL_{m} over \mathbb{Q} such that:
(i) (selfdual) $\pi^{\vee} \simeq \pi$,
(ii) (level 1) π_{p} is unramified for each prime p,
(iii) (algebraic) the infinitesimal character $\inf \pi_{\infty} \subset \mathrm{M}_{m}(\mathbb{C})$ has eigenvalues $w_{1} \geq w_{2} \geq \cdots \geq w_{m}$ with $w_{i}-w_{j} \in \mathbb{Z}$ and $w_{i} \in \frac{1}{2} \mathbb{Z}$ (called the weights of π).

Counting problem: Determine the number $\mathrm{N}_{m}\left(w_{1}, \ldots, w_{m}\right)$ of π of weights w_{1}, \ldots, w_{m} (finite by Harish-Chandra)

Under (iii) we expect (and actually know) the existence of associated m-dimensional ℓ-adic Galois representations to $\pi|.|^{w_{1} / 2}$.

A few simple properties

1. π has trivial central character (and $\pi=1$ for $m=1$).
2. As $\pi_{\infty} \simeq \pi_{\infty}^{\vee}$ we have $w_{m+1-i}=-w_{i}$ for each i.
3. Archimedean Jacquet-Shalika estimates imply temperedness $\mathrm{L}\left(\pi_{\infty}\right)_{\mid \mathbb{C}^{\times}} \simeq \oplus_{i=1}^{m}(z / \bar{z})^{w_{i}}$ (Clozel's purity lemma). So we essentially now $\mathrm{L}\left(\pi_{\infty}\right)$ from knowledge of the w_{i}.
4. For $k>0$ even we have $\mathrm{N}_{2}\left(\frac{k-1}{2},-\frac{k-1}{2}\right)=\operatorname{dim} \mathrm{S}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$.

Definition: Say π is regular if $\mathrm{L}\left(\pi_{\infty}\right)$ is multiplicity free. (\Leftrightarrow the w_{i} are distinct, except possibly two weights 0 for $m \equiv 0 \bmod 4$.)

Fact: A regular π is orthogonal iff its weights are in \mathbb{Z}.

Back to the explicit formula methods

Using the explicit formula method, we prove the following key:
Proposition : (Ch.-Taïbi) For several thousands of explicit regular $w=\left(w_{i}\right)_{1 \leq i \leq m}$ and $m \leq 17$ we have $\mathrm{N}_{m}(w)=0$.
Remark: The explicit formula method gives at best concrete upper bounds on $\mathrm{N}_{m}(w)$, but never allows to prove lower bounds.

Review of Arthur's theory for Siegel modular forms I

Assume $F \in \mathrm{~S}_{\underline{\underline{k}}}\left(\Gamma_{g}\right)$ is a cuspidal Hecke eigenform.
Let π be the cusp. aut. representation of $\operatorname{Sp}_{2 g}(\mathbb{A})$ generated by F.
$-\pi_{p}^{\mathrm{Sp}_{2 g}\left(\mathbb{Z}_{p}\right)} \neq 0$ for each prime p.
$-\pi_{\infty} \simeq \mathrm{D}_{\underline{k}}$ (lowest/highest weight module).
Simple but important fact: the $2 g+1$ eigenvalues of the infinitesimal character of $\mathrm{D}_{\underline{k}}$ are 0 and the $\pm\left(k_{i}-i\right), i=1, \ldots, g$.

They are distinct for $k_{g}>g$, i.e. when $\mathrm{D}_{\underline{k}}$ is (hol.) discrete series.

Review of Arthur's theory for Siegel modular forms II

Let $\psi=\oplus_{j=1}^{s} \pi_{j}\left[d_{j}\right]$ the global Arthur parameter of π. Then:
(a) ψ_{p} is unramified for each prime p (i.e. each π_{j} has level 1).
(b) ψ_{∞} has the same inf. character as π_{∞}.

Definitely assume $k_{g}>g$. Assertion (b) has two consequences:

- (weights condition) π_{j} is algebraic regular for each j and

$$
\left\{0, \pm\left(k_{i}-i\right) i=1, \ldots, g\right\}=\{w+a\}
$$

with $w \in \operatorname{Weights}\left(\pi_{j}\right)$ and $a \in \frac{1}{2} \mathbb{Z}$ s.t. $|a| \leq d_{j}$ and $a \equiv d_{j} \bmod \mathbb{Z}$.

- ψ_{∞} is an Adams-Johnson parameter, i.e. $\Pi\left(\psi_{\infty}\right)$ is an Adams-Johnson packet (AMR).

Review of Arthur's theory for Siegel modular forms III

Most important case: $s=1$ and $d_{1}=1$, i.e. $\psi=\varpi$ with ϖ a level 1 , orthogonal, cusp. aut. rep. of $\mathrm{GL}_{2 g+1}$ with reg. weights

$$
w_{\underline{k}}=\left(k_{1}-1, k_{2}-2, \ldots, k_{g}-g, 0, \ldots\right)
$$

(Trivial) special case of (AMF) : Conversely, any level 1 , selfdual orthogonal, algebraic regular ϖ appears this way, for a unique F up to scalars.

If $s>1$ or $d_{1}>1$, the form F is usually called endoscopic.

Review of Arthur's theory for Siegel modular forms IV

In general, there is a unique $j_{0} \in\{1, \ldots, s\}$ such that $\pi_{j_{0}}$ has odd dimension (i.e the weight 0).

Further observations (Ch.-Renard, AMR):

1. We have $d_{j 0}=1$, otherwise $\Pi\left(\psi_{\infty}\right)$ does not contain π_{∞}.
2. $\left\langle-, \mathrm{D}_{\underline{\underline{ }}}\right\rangle$ is always $\epsilon_{2}+\epsilon_{4}+\epsilon_{6}+\cdots+\epsilon_{2[g / 2]}$.
\longrightarrow Allows to find all further restrictions on the weights of the π_{j} by applying (AMF) (parity, relative ordering).

No other constraints : conversely, using (AMF) we are thus able to determine all possible endoscopic contributions ("lifts"). See Ch.-Lannes for list of concrete formulas.

Conclusion : (Key Fact A) In order to determine $\operatorname{dim} \mathrm{S}_{\underline{k}}\left(\Gamma_{g}\right)$, enough to know $\mathrm{N}_{m}(w)$ for all $m \leq 2 g+1$ and $w_{1} \leq k_{1}-1$.

Statement of main theorems

Main Theorem with Taïbi: (i) Computation of all masses for $\mathrm{Sp}_{2 g}$ with $g \leq 8$ and for split SO_{n} with $n \leq 17$.
(ii) "Concrete" and implemented formulas for $\operatorname{dim} \mathrm{S}_{\underline{k}}\left(\Gamma_{g}\right)$ for $g \leq 8$ and $k_{g}>g$, including contributions of all possible endoscopic lifts.
(iii) "Concrete" and implemented formulas for $\mathrm{N}_{m}(w)$ for any $m \leq 16$ and regular w.

See webpage for many table.
Inductive proof : even if we are interested only in $\mathrm{Sp}_{2 g}$, we are forced to consider as well all $\mathrm{Sp}_{2 g^{\prime}}$ with $g^{\prime}<g$ and all split $\mathrm{SO}_{n^{\prime}}$ with $n^{\prime}<2 g+1$.

Back to trace formula for $\mathrm{Sp}_{2 g}$

Fix $\underline{k}=\left(k_{1}, k_{2}, \ldots, k_{g}\right) \in \mathbb{Z}^{g}$ with $k_{g}>g$.
Let $\Pi_{\underline{k}}$ be the set of 2^{g} discrete series of $\operatorname{Sp}_{2 g}(\mathbb{R})$ with same inf. character as $\mathrm{D}_{\underline{\underline{k}}}$ (discrete series L-packet).
We apply Arthur's formula to $G=\operatorname{Sp}_{2 g}$ and test function $f(g) d g$:

- same $f_{p}\left(g_{\rho}\right) d g_{\rho}$ as before,
- to get a formula with a nice geom. side Arthur is forced to choose for $f_{\infty}\left(g_{\infty}\right) d g_{\infty}$ the sum of "the" pseudocoefficients of all the elements of $\Pi_{\underline{k}}$ (with signs $(-1)^{\frac{g(\xi+1)}{2}}$).

$f_{\infty}\left(g_{\infty}\right) d g_{\infty}$ is an Euler-Poincaré function

Set $V_{\underline{k}}=$ finite dim. irrep. of $\operatorname{Sp}_{2 g}(\mathbb{C})$ with same inf. char. as $\mathrm{D}_{\underline{k}}$.
Clozel-Delorme: For any irr. unitary rep. of $G(\mathbb{R})$ we have $\operatorname{trace}\left(f_{\infty}\left(g_{\infty}\right) d g_{\infty} \mid U\right)=\sum_{i \geq 0}(-1)^{i} \operatorname{dim} H^{i}\left(\mathfrak{g}, K ; U \otimes V_{\underline{k}}^{\vee}\right)=: \operatorname{EP}(U, \underline{k})$.

- Only depends on \underline{k}.
- Only regular cohomological representations with same inf. char. as $\mathrm{D}_{\underline{k}}$ contribute (discrete series \& many nontempered in gen.).

Spectral side

Still $\mathrm{T}_{\text {spec }}(G ; \underline{k})=\operatorname{trace}\left(f(g) d g \mid \mathcal{A}^{2}(G)\right)$. We have thus

$$
\mathrm{T}_{\text {spec }}(G ; \underline{k})=\operatorname{EP}\left(\mathcal{A}^{2}(G), \underline{k}\right) \in \mathbb{Z}
$$

Fairly complicated alternating sum and much work needed to understand it. In much the same way I explained $\mathrm{S}_{\underline{k}}\left(\Gamma_{g}\right)$ may be reconstructed from selfdual alg. regular level 1 algebraic π 's, Arthur's endoscopic classification (using (AMF) and AMR) imply:
Key fact B: $\mathrm{T}_{\text {spec }}(G ; \underline{k})=2^{g}(-1)^{g(g+1) / 2} \mathrm{~N}_{2 g+1}\left(w_{\underline{k}}\right)+$ an explicit function of the $\mathrm{N}_{m}(w)$ for $w_{1} \leq k_{1}-1$ and $m<2 g+1$.
See Taïbi's AENS paper for the precise recipe.

Geometric side

Arthur's trace formula still takes the form:

$$
\mathrm{T}_{\text {spec }}(G ; \underline{k})=\mathrm{T}_{\text {geom }}(G ; \underline{k})=\mathrm{T}_{\text {ell }}(G ; \underline{k})+\mathrm{T}_{\text {nonell }}(G ; \underline{k})
$$

where:

- $\mathrm{T}_{\text {ell }}(G, \underline{k})$ is defined exactly as before : just replace k by \underline{k}.
- $\mathrm{T}_{\text {nonell }}(G ; \underline{k})$ may be explicitly deduced from the $\mathrm{T}_{\text {ell }}\left(L ; \underline{k}^{\prime}\right)$ for the so-called cuspidal Levi subgroups L of G (there are products of $\mathrm{GL}_{1}, \mathrm{GL}_{2}$ (close to PGL_{2}), and of $\mathrm{Sp}_{2 g^{\prime}}$ with $g^{\prime}<g$). Very concrete general formulas for these non elliptic terms are given by Taïbi.

The masses

Still as before we write :

$$
\mathrm{T}_{\mathrm{ell}}(G ; k)=\sum_{c \in \mathrm{C}(G)} m_{c} \operatorname{trace}\left(c \mid V_{\underline{k}}\right)
$$

with the unknown masses $\mathrm{m}_{c} \in \mathbb{Q}$. Rather easy to determine $C(G)$, say $\bmod x \mapsto-x$ (degree $2 g$ products of cycl. pol.).

G	Sp_{2}	Sp_{4}	Sp_{6}	Sp_{8}	Sp_{10}	Sp_{12}	Sp_{14}	Sp_{16}
$\|\mathrm{C}(G) / \sim\|$	3	12	32	92	219	530	1157	2521

Last argument

Assume we know the masses of $\mathrm{Sp}_{2 g^{\prime}}$ for $g^{\prime}<g$, and of $\mathrm{SO}_{n^{\prime}}$ for $n^{\prime}<2 g+1$.

Induction: We know the $\mathrm{T}_{\text {geom }}\left(G^{\prime}, \underline{k^{\prime}}\right)$ for those G^{\prime}, hence the $\mathrm{T}_{\text {spec }}\left(G^{\prime}, \underline{k}^{\prime}\right)$ as well by trace formula. By Key Fact B we have a formula for $\mathrm{N}_{m}(w)$ for all $m \leq 2 g$ and regular w.
Assume we also know $\mathrm{N}_{2 g+1}\left(w_{0}\right)=0$ for some regular w_{0}, e.g. using explicit formula. Write $w_{0}=w_{\underline{k}}$. We deduce $\mathrm{T}_{\text {spec }}(G ; \underline{k})$ hence get a linear relation among the masses m_{c}.

Miracle: We proved enough vanishing results to get enough relations this way up to $g=7$ to invert the linear system!
This being done, we get all masses m_{c}, hence $\mathrm{N}_{2 g+1}(w)$ for all w (by Key Fact B), hence formulas for $\operatorname{dim} \mathrm{S}_{\underline{k}}\left(\Gamma_{g}\right)$ (by Key fact A) and all endoscopic contributions (by AMF).

For $g=8$, not enough relations, but compute enough "easy m_{c} " by Taïbi's method. \square

