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Abstract. Let K be a CM number field and GK its absolute Galois group. A
representation of GK is said polarized if it is isomorphic to the contragredient of
its outer complex conjugate, up to a twist by a power of the cyclotomic character.
Absolutely irreducible polarized representations of GK have a sign ±1, general-
izing the fact that a self-dual absolutely irreducible representation is either sym-
plectic or orthogonal. If Π is a regular algebraic, polarized, cuspidal automorphic
representation of GLn(AK), and if ρ is a p-adic Galois representation attached
to Π, then ρ is polarized and we show that all of its polarized irreducible con-
stituents have sign +1. In particular, we determine the orthogonal/symplectic
alternative for the Galois representations associated to the regular algebraic, es-
sentially self-dual, cuspidal automorphic representations of GLn(AF ) when F is
a totally real number field.

1. Introduction

1.1. The sign of a representation. Let L be a field of characteristic 0 or greater
than 2. Let G be a group, and g 7→ gc an involution of G. For ρ a representation
G→ GLn(L), we define ρ⊥ : G→ GLn(L), g 7→ tρ(gc)−1. The equivalence class of
the representation ρ⊥ only depends on the equivalence class of ρ.

We fix χ : G → L∗ a character such that χ(g) = χ(gc) for all g. This property
ensures that ρ 7→ ρ⊥χ−1 is an involution. In the applications, G will be the absolute
Galois group of a CM number field K, c the outer automorphism defined by the
non trivial element in Gal(K/F ) where F is the maximal totally real subfield of K,
and χ will be a power of the cyclotomic character.

Let ρ be a semi-simple representation G→ GLn(L) such that

ρ⊥ ' ρχ.(1)

This property is obviously stable by extension of the field of coefficients L.
We shall now attach to any absolutely irreducible ρ satisfying (1) an invariant,

that we call its sign. The invariant can take the value +1 or −1. By Schur’s lemma
there exists a unique (up to a scalar) matrix A ∈ GLn(L) such that

ρ⊥ = AρA−1χ.(2)

Applying this relation twice, we see that AtA−1 commutes with ρ⊥, hence by Schur’s
lemma again is a scalar matrix λ. So tA = λA and λ = ±1. This sign is called the
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sign of ρ (with respect to χ). Note that it is necessarily 1 if n is odd, since there is
no invertible antisymmetric matrix in odd dimension.

If ρ′ := Q−1ρQ for some Q ∈ GLn(L), then ρ′ satisfies (2) with A′ = tQAQ, so
the sign of ρ only depends on the isomorphism class of ρ. Moreover, it is obvious
that it remains unchanged under arbitrary extensions of the coefficient field L.
However, it depends on χ in general: if ρ ' ρ⊗ ε for some non-trivial character ε,
then the sign of ρ with respect to χ and χε may differ.1

1.2. Galois representations attached to unitary groups. Let F be a totally
real field and K a totally imaginary quadratic extension, c ∈ Gal(K/F ) the non-
trivial automorphism. Let Π be a cuspidal automorphic representation for GLn over
K, and assume that Π is polarized, i.e. the contragredient Π∨ of Π is isomorphic
to Π ◦ c, and that Π∞ is algebraic regular (see [ChH, General Hypotheses 2.1]).

Under those hypotheses, Shin [Sh] and the many coauthors of this two-volumes
book [GRFAbook] have shown the existence of a compatible system of Galois rep-
resentations attached to Π (see [ChH, Theorem 3.2.5]):

Theorem 1.1. There is a number field E(Π) and a compatible system ρΠ,λ : GK →
GL(n,E(Π)λ) of semisimple λ-adic representations, where λ runs through finite
places of E(Π), such that for all finite primes v of K of residue characteristic
prime to NE(Π)/Q(λ), and such that Πv is unramified,

(ρΠ,λ|Gv)
F−ss ' L(Πv ⊗ | • |

1−n
2

v ),

where Gv is a decomposition group of K at v and L(•) is the local Langlands cor-
respondence.

The given property suffices to characterize uniquely ρΠ,λ up to isomorphism and
implies that ρπ,λ satisfies (1); more precisely, let c be a complex conjugation in K,
that is an element of GF − GK of order 2. We set gc = cgc−1 = cgc for g ∈ GK :
this is an automorphism of order 2. For that automorphism, we have

ρ⊥(g) = tρ(gc)−1 ' ρ(g)ω(g)n−1

where ω is the cyclotomic character.
The theorem also includes other specifications on ρΠ,λ, including the determina-

tion of the Hodge-Tate weights of ρΠ,λ at places of same residual characteristic as
λ (see also §1.6 below). This description implies, since Π∞ is cohomological, that
these weights are distinct integers, hence that ρΠ,λ is a direct sum of non-isomorphic
absolutely irreducible representations of GK .

1.3. The result. The object of this article is to prove

Theorem 1.2. For every finite prime λ of E(Π), every irreducible factor r of ρΠ,λ

that satisfies r⊥ ' r ⊗ ωn−1 has sign +1.

1For example, let G ⊂ GL2(L) be the normalizer of the diagonal matrices, ρ the natural inclusion and

gc := g det(g)−1. Then ρ has sign −1 for the trivial character, as t(gc)−1 = wgw−1 for any g ∈ GL2(L) and for

w =

„
0 −1
1 0

«
. But ρ has sign +1 for the order 2 character ε which is trivial on the diagonal matrices, as

g = dgd−1ε(g) for g ∈ G and d the diagonal matrix (1,−1).
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In this statement, it is understood that this sign is computed with respect to
the character χ := ωn−1. It is expected that ρΠ,λ is absolutely irreducible (this is
known if n ≤ 3 by [BlRo1] and in many cases if n = 4 by an unpublished work
of Ramakrishnan). If it is so, ρΠ,λ has only one factor and satisfies (1), and our
theorem simply asserts that its sign is +1: this is obvious when n is odd, but new
when n is even.

The theorem above has an important corollary concerning essentially self-dual
Galois representations of a totally real field F . Precisely, let Π be a cuspidal
automorphic representation of GLn(AF ) such that:

(a) Π∨ ' Π ⊗ η, where η is a Hecke character of F such that ηv(−1) does not
depend on the real place v of F ,

(b) Πv is cohomological for each real place v of F .

In this case as well the aforementionned works show that for some coefficient
number field E(Π) there is a compatible system of λ-adic semisimple representations
ρΠ,λ : GF → GLn(E(Π)λ) which are compatible with the Frobenius-semisimplified
local Langlands correspondence twisted by |.|

1−n
2 at each prime not dividing the

residue characteristic of λ and unramified for Π ([ChH, Thm. 4.2]). In particular,
we have

ρ∨Π,λ ' ρΠ,λ ⊗ ωn−1ηλ,

where ηλ is the λ-adic realization of η (note that η is necessarily algebraic by (a)
and (b)). As Π is cuspidal, ρΠ,λ is conjecturally irreducible, but as before this is
not known in general (however, each irreducible constituent of ρΠ,λ has multiplicity
one and is absolutely irreducible). The counterpart of the sign in this situation is
the standard alternative orthogonal/symplectic : if r : GF → GLd(L) is absolutely
irreducible and satisfies r∨ ' r ⊗ ωn−1ηλ, then the unique GF -equivariant pairing
r ⊗ r → E(Π)λω

1−nη−1
λ is either symplectic or orthogonal.

The sign ηv(−1) in (a) will be denoted by η∞(−1). The signs η∞(−1) and ηλ(c)
are related as follows: there is a unique q ∈ Z such that η|.|−q is an Artin character,
thus

ηλ(c) = (−1)qη∞(−1).

If z denotes the central character of Π, then z is an algebraic Hecke character of F
and z−2 = ηn. In particular, η is the square of an algebraic Hecke character when
n is odd, thus η∞(−1) = (−1)q = ηλ(c) = 1 in this case.

Corollary 1.3. (Totally real field case) If n is even and ηλ(c) = 1, then any
irreducible constituent r of ρΠ,λ such that r∨ ' r⊗ωn−1ηλ is symplectic. Otherwise,
any such constituent is orthogonal.

Proof — Let K be a totally imaginary quadratic extension of F which is ramified
above some finite place v of F whose residue characteristic is prime to the one of λ,
and such that Πv is unramified. Let εK/F be the non trivial character of Gal(K/F )
or its associated Hecke character of F . As Π 6' Π⊗εK/F (at v), Arthur-Clozel’s base
change ΠK of Π to GLn(AK) is cuspidal. Moreover, for each irreducible constituent
r of ρΠ,λ, r|GK

remains absolutely irreducible, still as r 6' r ⊗ εK/F (at v).
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By [ClHT, Lemma 4.1.4], we may find some algebraic Hecke character ψ of K
such that ψ oNK/F = η oNK/F . In particular, ηλ|GK

= ψλ(ψλ
⊥)−1, Π′ := ΠK ⊗ ψ

is polarized (and algebraic regular) and ρΠ′,λ = ρΠ,λ|GK
⊗ψλ. Theorem 1.2 ensures

that for each r as in the statement, r|GK
⊗ψλ has sign +1 with respect to ωn−1. By

Lemma 2.1 below, r|GK
has sign +1 with respect to ψλ(ψ⊥λ )−1ωn−1 = ηλ|GK

ωn−1.
Fix a complex conjugation c ∈ GF and choose a matrix realization r : GF →

GLd(F ) such that r(c) is diagonal, so r(c) = tr(c) = r(c)−1. For some P ∈ GLd(L),
tr(g)−1 = Pr(g)P−1ηλ(g)ω(g)n−1, ∀ g ∈ GF .

Applying this to c gives

(3) r(c)P = Pr(c)ηλ(c)(−1)n−1.

On the other hand, an immediate computation shows that for all g ∈ GK ,
tr(cgc)−1 = Ar(g)A−1ηλ(g)ω(g)n−1

with A = r(c)P . By the preceding paragraph we have tA = A, so
tP = (−1)n−1ηλ(c) P

by (3) and the corollary follows as ηλ(c) = 1 for odd n. �

1.4. Historical remarks. The question of the sign of Galois representations at-
tached to polarized automorphic representations of GLn on a totally real or CM
field is out at least since Clozel, building on the work of Kottwitz, proved their
existence in many cases in the mid nineties. More recently, this question has been
extensively discussed in [ClHT] where some cases of the above theorem, concerning
Galois representations with some constraining properties ensuring they have a nice
and workable deformation theory, are proved by a very indirect method – indeed
the whole long and hard paper is written with an unknown sign ε and only near
the end, after the Taylor-Wiles method has been adapted to unitary groups, is it
shown that ε = −1 leads to a contradiction!

Theorem 1.2 appears, without its proof, in the concluding remarks of our book
[BCh] (see [BCh, theorem 9.5.1]) that was made public late 2006. We knew the
proof that follows then2, and told it to a few colleagues, but decided to wait for
a more advanced version of the present book project, on which it depends, before
writing it.

Meanwhile, one of us, Gaëtan Chenevier, together with Laurent Clozel, have
found a completely different proof of a special case of Corollary 1.3, namely when
η = 1 and Π is square integrable at some finite place. In this case, ρΠ,λ is known to
be irreducible by works of Harris-Taylor and Taylor-Yoshida, and they show that it
is symplectic for n is even. Their proof was actually conditional to the computation
of some archimedean orbital integrals, which has since been done by Chenevier and
Renard in [ChR]. The method of the proof in [ChCl] is less expensive in difficult
tools than ours, using ”simply” the new insight in the trace formula they discovered.

2At least for places λ of residual characteristic p split in K.
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However, it does not seem that it can be extended to the case of a CM field, or
even to the case of an automorphic representation that does not satisfy any local
square-integrability hypothesis.

Let us mention also that in a recent preprint [Gr], B. Gross introduces a gen-
eral notion of odd Galois representations and conjectures that the expected Galois
representations attached to definite reductive groups G are odd in his sense. Our
theorem proves his conjecture when G is the a unitary group attached to a CM
extension K/F , in which case it has the following meaning.

Let G̃ be the semi-direct product of Gal(K/F ) = 〈c〉 = Z/2Z by GLn(L) ×
L∗ with respect to the order two automorphism (x, y) 7→ (ytx−1, y) (see [ClHT,
Ch.I] for similar considerations). Assume that ρ : GK → GLn(L) satisfies (1), is
absolutely irreducible, and fix A a matrix as in (2), and ε = ±1 the sign of ρ.
Consider the morphism GK → GLn(L) × L∗ defined by g 7→ (ρ(g), χ(g)−1). A
simple computation shows that this map extends to a morphism ρ̃ : GF → G̃ if we
set ρ̃(c) = (tA−1, ε)c. Assume now that ρ = ρΠ,λ. The map ρ̃ is the analog in our
situation of the map denoted ρ whose existence is conjectured in [Gr, page 8] and
Gross predicts that the conjugation by ρ̃(c) on Lie(GLn) is a Cartan involution,
that is, has the form X 7→ −P tXP−1 with P a symmetric invertible matrix. In our
situation, the conjugation by ρ̃(c) on the Lie algebra is the map X 7→ −tA−1tXtA.
So we see that Gross’ prediction amounts to “A is symmetric”, which is exactly our
theorem. 3

1.5. Idea of the proof. The idea of the proof is very simple. Assume that we
know that the representation ρΠ,λ is irreducible. Then there is nothing to prove if
n is odd. When n is even, we can reduce to the odd case, as follows: descend Π to
a unitary group in n variables, transfer the result to an automorphic representation
π of a unitary groups in n+1 variables which is compact at infinity, using a special
case of endoscopic transfer proved by Clozel, Harris and Labesse. Use eigenvarieties
to deform π into a family of automorphic forms whose Galois representations are
generically irreducible. For those Galois representations, the sign is +1 since their
dimension is odd. Specialize this result to deduce that the components of the
representation attached to π, including ρΠ,λ, have sign +1.

There are several technical difficulties that make the proof a little bit more
indirect: in the current state of science, we do not know that ρΠ,λ is (absolutely)
irreducible, and we cannot descend Π to U(n) or transfer it to U(n + 1) without
supplementary assumptions on K/F and Π. Moreover, we cannot always deform a
representation π in a family whose Galois representation is generically irreducible.
But this is not a big issue, since, as was already observed in [BCh, §7.7], we can
actually do so in two steps, deforming π in a family whose generic members can
themselves be deformed irreducibly. Similarly the obstacle posed by the conditions
on descent and endoscopic transfer can be solved by base change techniques inspired
by the ones used in [ChH].

3When ρ is not assumed to be irreducible anymore, note that theorem 1.2 still implies that we
may find some symmetric A such that (2) holds, hence a ρ̃ as above satisfying Gross’ conjecture.
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1.6. Notations and conventions. Our general convention will be that the local
Langlands correspondence is normalized so that geometric Frobeniuses correspond
to uniformizers (and as in [HT]). If π is an unramified complex representation of
GLn(E) with E a p-adic local field, or more generally an irreducible smooth repre-
sentation with a nontrivial vector fixed by a Iwahori subgroup, we shall often denote
by L(π) the semisimple conjugacy class in GLn(C) of the geometric Frobenius in
the L-parameter of π.

If K is a field, we shall denote by GK its absolute Galois group Gal(K/K); when
K is a number field and v a place of K we also write Gv for GKv .

We shall use the following notions of p-adic Hodge theory. Let us fix E a finite
extension of Qp, Qp an algebraic closure of Qp, and let V be a p-adic representation
of GE of dimension n over Qp. To such a representation Sen attaches a monic
polynomial Psen(T ) ∈ (Qp ⊗Qp E)[T ] of degree n, whose roots will be called the
Hodge-Tate weights of V (even when they are not natural integers). Our normal-
ization of the Sen polynomial is the one such that the Hodge-Tate weight of the
cyclotomic character Qp(1) is −1 ∈ Qp ⊗Qp E. Under the natural identification

Qp ⊗Qp E = Qp
Hom(E,Qp), we shall often write them as a collection {ki,σ} for all

i ∈ {1, ..., n} and all σ ∈ Hom(E,Qp), ordered so that for each embedding σ we
have

k1,σ ≤ k2,σ ≤ · · · ≤ kn,σ.

We shall need to consider various partial sums of those weights, for which the
following definitions will be useful. For I a subset of {1, . . . , n} × Hom(Kw,Qp),
we denote by kI the sum

∑
(i,σ)∈I ki,σ. When I = {i} × Hom(Kw,Qp), we write ki

instead of kI . Thus ki =
∑

σ ki,σ.
Assume now that V is crystalline in the sense of Fontaine. Let E0 ⊂ E be

the maximal unramified extension of Qp inside E, and let v : Qp → Q be the
valuation normalized so that v(p) = e, where e is the absolute ramification index of
E. Fontaine attaches to V an E0-vector space Dcrys(V ) with a semilinear action of
the crystalline Frobenius ϕ (commuting with Qp), and which is free of rank n over
E0 ⊗Qp Qp. If f = [E0 : Qp], then ϕf is Qp ⊗Qp E0-linear and commutes with ϕ,
so its characteristic polynomial Pϕ(T ) actually belongs to Qp[T ]. This polynomial
will be referred as the characteristic polynomial of ϕ, its roots are the eigenvalues
of the crystalline Frobenius, and their valuations (with respect to v) its slopes.4

With these notations, if the ki,σ are the Hodge-Tate weights of V , then the weak
admissibility property of Dcrys(V ) implies in particular that

v(Pϕ(0)) =
∑
i,σ

ki,σ.

We can now explain a bit more precisely the p-adic part of theorem 1.1. Assume
that w is a finite place of K with the same residual characteristic as λ, and assume
than Πw is unramified. Let Pw(T ) ∈ E(Π)[T ] be the characteristic polynomial
of L(Πw|.|(1−n)/2). Then a refinement of theorem 1.1 asserts that ρΠ,λ|Gw is a

4This definition is slightly different from the usual definition of the slopes of an isocrystal (which
are ours divided by [E : Qp]), but it will be convenient to us.
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crystalline representation and that the characteristic polynomial Pϕ ∈ E(Π)λ[T ] of
its crystalline Frobenius coincides with the image of Pw(T ) in E(Π)λ[T ], see [ChH,
Thm. 3.2.5 (c)].5

2. Sorites on the sign

2.1. The notion of a good representation. For a representation ρ : GK →
GLn(L) that is a direct sum of absolutely irreducible and pairwise non isomorphic
representations, and that satisfies (1) for some fixed character χ, say that ρ is good
(with respect to χ) if for every irreducible factor of ρ that appears with multiplicity
one and satisfies (1), the sign of this factor is +1.

In this language, the theorem amounts to prove that ρΠ,λ is good, which is good.

2.2. Some trivial lemmas. In this paragraph, ρ : GK → GLn(L) is a direct sum
of absolutely irreducible representations, and satisfies (1).

Lemma 2.1. If ρ : GK → GLn(L) is good with respect to χ, and if ψ : GK → L∗

is a character, then ρψ is good with respect to χψ−1ψ⊥.
In particular, if m is an integer and if ψ⊥ = ψωm−n, then ρ is good with respect

to ωn−1 if and only if ρψ is good with respect to ωm−1.

Proof — Note first that since ρ satisfies (1) for χ, then ρψ still satisfies (1) for
the character χ′ = χψ−1ψ⊥ (which still satisfies χ′(gc) = χ′(g)) and is a sum of
absolutely irreducible pairwise non isomorphic factors, namely the ρiψ where the
ρi are the factors of ρ. Now if ρi is an irreducible factor that satisfies (1) for χ′, a
matrix A that satisfies (2) for ρi and χ satisfies also (2) for ρiψ and χ′, hence the
sign of ρi and ρiψ are the same, which proves the first assertion. The last part of
the lemma follows at once. �

Lemma 2.2. If ρ : GK → GLn(L) is good, and ρ′ is a sub-representation of ρ that
satisfies (1), then ρ′ is good too (with respect to the same character).

Proof — That one is really trivial. �

Lemma 2.3. Let F ′ be a totally real extension of F , and K ′ = KF . If ρ|GK′

has the same number of irreducible components as ρ, and if those components are
absolutely irreducible, then ρ|GK′ is good with respect to χ|GK′

if and only if ρ is
good with respect to χ.

Proof — If ρi is an (absolutely) irreducible factor of ρ that satisfies (1), then ρi|GK′

is still absolutely irreducible by hypothesis, still satisfies (1), and has obviously the
same sign as ρi. The lemma follows. �

5We will actually use this identity Pϕ = Pw only under the following extra assumptions for
which it holds by construction: assumptions (H1) and (H2) stated in §3.1 below on K/F and Π
are satisfied.
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2.3. A specialization result. In this paragraph, O is a henselian discrete valu-
ation domain with fraction field L and residue field k, such that 2 ∈ O∗. We set
also G = GK and assume that the character χ : GK → L∗ actually falls into O∗,
thus it makes sense to talk about condition (1) for k or L-valued representations of
G (by a slight abuse of language, we shall also denote by χ the residual character
GK → k∗). A simple but crucial observation for our proof is the following:

Proposition 2.4. Assume that ρ : G → GLn(O) is such that ρ ⊗ L and ρ̄ss are
a sum of absolutely irreducible pairwise non isomorphic representations and satisfy
(1). If ρ⊗ L is good with respect to χ, then so is ρ̄ss.

Moreover, the converse holds if ρ̄ss has the same number of irreducible factors as
ρ⊗ L.

Of course, in this statement ρ̄ss denotes the semisimplification of the reduction
ρ̄ := ρ⊗O k of ρ.

Proof — Let ρ̄1 be a factor of ρ̄ss that satisfies (1). Let τ1, . . . , τk be the irreducible
factors of ρ⊗ L. For each of them we can choose a stable O-lattice, and see them
as representations of G over O. We have ρ̄ss = ⊕k

i=1τi
ss so ρ̄1 appears in exactly

one of the τiss, say τ1ss. Moreover, τ1⊥ is isomorphic to τiχ for some i ∈ {1, . . . , k}.
But it follows that τiss contains ρ̄1 (since ρ̄1 satisfies (1)), so the only possibility is
that i = 1. In other words, τ1 satisfies (1), and replacing ρ by τ1, we are reduced
to prove the lemma with the supplementary assumption that ρ ⊗ L is absolutely
irreducible. In that case, the proposition is [BCh, Lemma 1.8.8].

Since this proposition is really one of the main tool used in our proof, and since
the proof of [BCh, Lemma 1.8.8] is a little bit difficult to separate from the other
concerns of [BCh, §1.8], let us sketch it here for the convenience of the reader,
trying to be as pedagogical as possible.

Note first that the basic point that makes the result not obvious is that there is
no reason so that we can find a matrix A for ρ⊗ L as in (2) with A ∈ GLn(O). A
priori we just have A ∈ GLn(L), and it is therefore not possible to reduce (2) mod
m.

There is one case, however, where a simple proof is possible: assume that ρ̄ss is
absolutely irreducible. In this case, the representations ρ⊥ and ρχ over O, being
isomorphic over L and residually absolutely irreducible, are isomorphic over O by
a theorem of Serre and Carayol. In other words, we can find a matrix A ∈ GLn(O)
such that (2) holds, and reducing this modulo m, we get that ρ⊗L and ρ̄ have the
same sign in this case. Note that this proves also the last assertion of the theorem
(in all cases!).

The proof of the general case consists in reducing to the residually irreducible
case. This is not possible, however, if we keep working with representations of
groups only. We have to work in the larger world of representations of algebras
instead. As we saw, we may assume that ρ ⊗ L is absolutely irreducible, and we
set ρ̄ss = ⊕iρ̄i.

Let R be the algebra O[G], and S = ρ(R) ⊂Mn(O). We have S⊗O L = Mn(L).
The algebra S is provided with a natural O-algebra anti-automorphism τ , induced
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by the one on R defined on g ∈ G by g 7→ χ(g)−1(gc)−1. Explicitly, by (2), we have
for M ∈ S,

(4) τ(M) = tA−1tM tA,

and by our sign assumption tA = A : the involution τ is a symmetric involution of
the matrix algebra S ⊗O L = Mn(L).

On the other hand, let S denote the image of k[G] in the k-endomorphisms of the
representation ρ̄ss = ⊕iρ̄i. Then S '

∏
iMni(k) (ni = dim ρ̄i,

∑
i ni = n) and S is

also provided with a natural k-algebra anti-automorphism τ as above. Moreover,
there is a natural surjective O-algebra map S → S which is τ -equivariant.

Let us denote by εi ∈ S be the central idempotent corresponding to ρ̄i. It is
well known that εi can be lifted as an idempotent ei of S as O is henselian and S

finite over O. However, we need a more precise lifting result. Let us fix an i such
that ρ̄i satisfies (1), then we have τ(εi) = εi. What we need is an idempotent ei in
S lifting εi, such that τ(ei) = ei. The existence of such an idempotent is easy to
prove: first choose any lift x ∈ S of εi and let S0 be the sub-O-algebra generated
by 1

2(x+ τ(x)). Obviously, τ fixes any element of S0. The restriction of the natural
surjection S → S to S0 is onto a k-subalgebra of S that contains the image of
1
2(x + τ(x)), that is εi. Thus, defining ei as a lift of εi in S0 does the job. (This
result is the trivial case of [BCh, Lemma 1.8.2].) As ρ̄i is absolutely irreducible and
has multiplicity one in ρ̄ss it actually turns out that the rank of ei is ni = dim ρ̄i,
and that eiSei ' Mni(O). Replacing ρ by a conjugate if necessary, we may then
assume that ei is a diagonal idempotent of rank ni in Mn(L).

Applying (4) to M = ei we get Aei = tei
tA, that is Aei is symmetric. In other

words, τ induces a symmetric involution on eiSei ' Mni(O). As a consequence,
τ also induces a symmetric involution on εiSεi = Endk(ρ̄i), which exactly means
that the sign of ρ̄i is +1, QED. �

Remark 2.5. The above proposition, or rather its crucial case [BCh, Lemma 1.8.8]
is a theorem of Thompson in the case where G is a finite group, χ = 1 and the
involution g 7→ gc is the identity : see [T, last theorem].

3. Proof of the main theorem

3.1. Proof of theorem 1.2 under special hypotheses. We shall first prove
the theorem under a set of additional hypotheses on the CM extension K/F , the
automorphic representation Π and the place λ.

Let us call p the residual characteristic of λ. Recall that the automorphic repre-
sentation Π defines an embedding ι : E(Π) → C. We fix once and for all algebraic
closures Q and Qp of Q and Qp, as well as some embeddings ι∞ : Q → C and
ιp : Qp → C such that the induced map ιpι

−1
∞ ι : E(Π) → Qp factors through

E(Π)λ.
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3.1.1. Some special hypotheses.

(H1) Special Hypotheses 2.2 of [ChH], that is
(H1a) K/F is unramified at all finite places
(H1b) Πv is spherical at all non-split non-archimedean places v of K
(H1c) The degree [F : Q] is even.

(H2) Hypothesis 1.3 of [ClHL], that is for all real places σ of K, the infinitesimal
character of Πσ is sufficiently far from the walls.6

(H3) There7 is a place v above p in F that splits in K, and for w a place of
K above v, Πw is unramified. Denote by {ϕ1, . . . , ϕn} the eigenvalues of
L(Πw|.|(1−n)/2). Then the Hodge-Tate weights {ki,σ} of ρΠ,λ|Gw and the
slopes v(ϕj) are in sufficiently general position in the following sense: if

c = max
i∈{1,...,n}

min
j∈{1,...,n}

|v(ϕi)− kj |

then for all subsets I and J of {1, ..., n}×Hom(Kw,Qp) with |I| = |J | < nd,
we have

|kI − kJ | > (n+ 1) · c.
In (H3) above, v : Qp → Q is the valuation such that v(p) is the ramification index
of p in Kw.

3.1.2. The theorem. We want to prove :

Theorem 3.1. With the supplementary hypotheses (H1), (H2) and (H3), Theo-
rem 1.2 holds.

The rest of this subsection is entirely devoted to the proof of this theorem.

3.1.3. Descent and transfer. Let m = n if n is odd, and m = n + 1 if n is even,
so that m is always odd. Let us call U(m) be the unitary group over F attached
to K in m variables that is quasi-split at every finite places of F and compact at
every infinite place. Since m is odd, such a group always exists (uniquely up to
isomorphism). Actually, U(m) is simply the standard unitary group attached to
the hermitian form

∑m
i=1NK/F (zi) on Km ([BCh, §6.2.2]).

If n is odd, that is if n = m, by hypothesis (H1) and Labesse’s base change
theorem [L, Thm. 5.4], we can descend Π to a representation π of U(m) with
πv ' Πw for every place w of K split over v in F (with the natural identification
U(n)(Fv) ' GLn(Kw)), and such that for each complex place w of K above a real
place v of F , πv has the same infinitesimal character as Πw (under the natural
identification U(n)(Kw) ' GLn(C)).

If n is even, we use a result of endoscopic transfer due to Clozel, Harris, and
Labesse [ClHL]. Note first that using ι∞ι

−1
p , if v = wwc is as (H3) we may

identify Hom(Kw,Qp) = Hom(Fv,Qp) with subsets Σv and Σw of Hom(F,R) and
Hom(K,C). Let us first fix

µ : K∗\A∗
K → C∗

6Precisely, this means that the extremal weight of the associated algebraic representation of
GLn(K ⊗ R) does not belong to a wall.

7See §1.6 for the notations used in this assumption.
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a Hecke character such that µ(c(x))−1 = µ(x), and such that for each s ∈ Σv,
µs(z) = (σs(z)/σs(z))

1
2 where σs ∈ Σw is associated to s as above. This last

assumption implies that µ|A∗
F coincides with the sign of K/F , and that µ does not

come by base change from a Hecke-character of U(1) (see e.g. [BCh, §6.9.2]). Such
a Hecke character always exists, and as K/F is unramified at all finite places, we
can even assume (and we will) that it is unramified at the finite places of K which
are either above p or not split above F . Let us choose another Hecke character

χ : K∗\A∗
K → C∗

such that χ(c(z))−1 = χ(z) but assume now that χ descends to U(1), i.e. that for
each real place s ∈ Σv, χs(z) = σs(z/c(z))−aσ for some as ∈ Z. Assume also that χ
is unramified at the finite places of K which do not split over F . Under hypotheses
(H1) and (H2), and if all the as are big enough, by [ClHL, Thm 4.7] we can transfer
Π to an automorphic representation π of U(m) in such a way that at every place
w of K splits over a place v in F , we have

L(πv) = L(Πwµw)⊕ L(χv).(5)

Moreover, for each real place v of F and each complex place w of K above v, the
infinitesimal character of πv is obtained from the one of Πwµw in the obvious way
: in terms of the associated Harish-Chandra’s cocharacter, it is the direct sum of
the one of Πwµw and the one of χw.

In both cases (n even or odd), the aforementioned authors actually construct a
π which is moreover unramified at all the finite places of K which are not split over
F (we don’t really need this, but this fixes ideas).

3.1.4. Consequences of (H3). When n = m is odd, we set ρπ := ρΠ,λ. When n is
even, the GK representation of dimension m attached to π is by definition

ρπ := ρΠ,λ(µ|.|−
1
2 )⊕ χ|.|(1−m)/2.

Note that µ|.|−
1
2 and χ|.|(1−m)/2 are both algebraic Hecke characters of K. We shall

identify them here with their p-adic realization given by ι∞ and ιp. By assumption,
µ|.|−

1
2 is actually unramified at the place w, and χ|.|(1−m)/2 is crystalline, and we

shall denote by ϕµ and ϕχ ∈ Qp
∗ their associated Frobenius eigenvalue.

If n is even, so m = n+ 1, we set for each σ ∈ Hom(Kw,Qp),

km,σ :=
m− 1

2
+ aσ

(where σ is viewed as an element of Hom(F,R) as above). Thus, in any case, the
ki,σ for i = 1, . . . ,m and σ ∈ Hom(Kw,Qp) are the Hodge-Tate weights of ρπ|Gw.
We shall use for this extended collection {ki,σ} with all i ∈ {1, . . . ,m}, and for a
subset I of {1, . . . ,m} × Hom(Kw,Qp), the notation kI analogous to the one in
§1.6.

If n is even, we set ϕ′i := ϕiϕµ for i < m and ϕ′m := ϕχ. We have v(ϕ′i) = v(ϕi)
for i < m and v(ϕ′m) = km. When n = m is odd, we shall simply set ϕ′i := ϕi.
Thus, in both cases, ϕ′1, . . . , ϕ

′
m are the Frobenius eigenvalues of L(πw|.|(1−m)/2).
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If n is even, we precise now our choice of χ. We assume that kσ,m = aσ + d(m−1)
2

are all big with respect to the ki and v(ϕ′i) for i = 1, . . . , n, and also that they
are set sufficiently far apart so that any non trivial sum of the form

∑
σ∈S ±kσ,m,

where S ⊂ Hom(Kw,Qp), is big in the same sense as above. This is of course always
possible. With those assumptions:

Lemma 3.2. (i) The representation πv is a fully induced unramified principal
series, and the eigenvalues of L(πw|.|(1−m)/2) are ϕ′1, . . . , ϕ

′
m.

(ii) We have c = maxi∈{1,...,m} minj∈{1,...,m} |v(ϕ′i) − kj |, and for all distinct
subsets I and J of {1, . . . ,m} ×Hom(Kw,Qp) and with |I| = |J | < md, we
have |kI − kJ | > m · c.

Proof — By (H3) and, if n is even, by (5), πv is unramified. Moreover, the
eigenvalues of L(πw|.|(1−m)/2) are ϕ′1, . . . , ϕ

′
m, and no quotient of those eigenvalues

is equal to q, the cardinal of the residue field of Kw. Indeed, a well-known result of
Jacquet-Shalika asserts that for i = 1 . . . n, the complex numbers q(1−m)/2ι∞ι

−1
p (ϕ′i)

are < q1/2 in absolute value, and q(1−m)/2ι∞ι
−1
p (ϕ′m) has norm 1 by construction.

Hence πv is a full unramified principal series by Zelevinski’s theorem, which is (i).
For (ii), there is nothing to prove if n = m is odd. Assume n even so m = n+ 1.

Let us note that for i = m, we have minj∈{1,...,m} |v(ϕ′i)−kj | = 0 since v(ϕ′m) = km.
For i ≤ n, the minimum minj∈{1,...,m} |v(ϕ′i) − kj | = 0 is not realized for j = m

because km is much too big.
Hence

max
i∈{1,...,m}

min
j∈{1,...,m}

|v(ϕ′i)− kj | = max
i∈{1,...,n}

min
j∈{1,...,n}

|v(ϕ′i)− kj |

= c.

It remains to prove that |kI − kJ | > mc = (n + 1)c. Let I0 (resp. J0) be the
subset of I (resp. of J) of pairs (i, σ) with i = m. If I0 = J0, then kI − kJ =
kI−I0 − kJ−J0 and since I − I0, J − J0, are distinct subsets of same cardinality
of {1, . . . , n} × Hom(Kw,Qp), the desired inequality comes directly from (H3). If
I0 6= J0, kI − kJ contains, in addition of a bounded numbers of terms ±ki,σ for
i ≤ n, a non trivial sum of the form

∑
S ±kσ,m, where S ⊂ Hom(Kw,Qp), hence

|kI − kJ | is again greater than mc. �

3.1.5. Eigenvarieties and their families of Galois representations. We are ready
now to start the deformation argument. Let U =

∏
v Uv ⊂ U(n)(AF,f ) be a compact

open subgroup such that πU 6= 0, and assume that Uv is a Iwahori subgroup for the
place v of (H3), and that Uv is hyperspecial for all places of K that are not split
over F .

From now on, we shall reserve the notation v for the place of F of hypothesis
(H3), and w for one of the place of K above v. We shall denote by d the degree of
the field Fv = Kw over Qp. To U , the place v and (ιp, ι∞), we can attach by [Ch2,
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Thm. 1.6] (see also [Ch1]) an eigenvariety X = XU,v,(ι∞,ιp) for the group U(m)/F
which is a reduced rigid analytic space over Qp of equidimension8 md.

By Labesse’s base change theorem [L, Cor. 5.3], if π′ is any automorphic repre-
sentation of U(m) which is unramified outside the split finite places of K/F , then π′

admits a base change to GLm/K (which is strong at each finite place and cohomo-
logical at each archimedean place with the expected infinitesimal character), hence
a Galois representation by Theorem 1.1. As explained in [BCh, Chap. 7.5] (or in
[Ch1]), this is enough to equip X with a continuous m-dimensional pseudocharacter
T : GK → O(X) of dimensionm. The eigenvarietyX and this T satisfy a number of
properties and we will only list below the ones we shall need. If x ∈ X(Q̄p) we note
Tx the evaluation of T at x and ρx the semi-simple representation GK → GLm(Q̄p)
of trace Tx. There is :

(i) Zariski-dense and accumulation subsets Zreg ⊂ Z ⊂ X(Qp) of classical
points,

(ii) a set of dm analytic functions9 κ1,σ, . . . , κm,σ where σ runs over the embed-
dings Kw → Qp,

(iii) a set of locally constant functions s1, . . . , sm : X(Q̄p) → Q,

satisfying the following conditions :

(a) if z ∈ Z, ρz|Gw is crystalline.
(b) if z ∈ Z, the ordered Hodge-Tate weights of ρz|Gw are {κi,σ}
(c) let C be any real number and ZC := {z ∈ Zreg, |κI(z)− κJ(z)| > C for all

distinct subsets I, J of {1, . . . ,m}×Hom(Kw,Qp) such that |I| = |J | < md}.
Then ZC is Zariski dense and accumulation in X.

Moreover, the classical points z in Z correspond to pairs (π(z),R(z)) where
π(z) is an automorphic representation of U(m) such that π(z)U 6= 0 and R(z) =
(ϕ1, . . . , ϕm) is an accessible refinement10 of π(z)w|.|(1−m)/2, in the following sense
: ρz is the Galois representation attached to the base change of π(z) to GLm/K by
Theorem 1.1 and for each i = 1, . . . ,m, v(ϕi) = si(z) + κi(z).

(d) If z ∈ Z parameterizes (π(z),R(z) = (ϕ1, . . . , ϕm)), then for all i we have
v(ϕi) = si(z) + κi(z).

The subset Zreg ⊂ Z parameterizes refined automorphic representations (π,R)
satisfying some additional properties, and for our concerns here we shall simply
assume that they are those (π,R) such that πv unramified and such that for each
real place s inducing v via ιp and ι∞, the infinitesimal character of πs is sufficiently

8It is not necessary here to let the weights corresponding to the other possible places of F above
p move, but we could have, and the eigenvariety would then have dimension n[K : Q].

9Again, we shall use for this collection {κi,σ}, and for a subset I of {1, . . . , m}×Hom(Kw, Qp)

(resp. an i ∈ {1, . . . , m}), the notation κI (resp. κi) analogous to the one in §1.6.
10Recall that an refinement of an irreducible smooth representation ρ of GLm(Kw) such that

ρI 6= 0 for I an Iwahori subgroup is an ordering (ϕ1, . . . , ϕm) of the eigenvalues of L(ρ)(Frob w). It

is said accessible if ρ appears as a sub-representation of the induced representation Ind
GLm(Kw)
B χδ

1/2
B

where B is (say) the upper Borel subgroup, δB is modulus character, and χ the (unramified)

character of the diagonal torus sending (x1, · · · , xm) to
Qm

i=1 ϕ
v(xi)
i (see [BCh, §6.4.4]).
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far from the walls. Under this latter condition, the base change of an automor-
phic representation of U(m) is not necessarily cuspidal, but always associated to
a decomposition m1 + · · · +mr = m and a r-tuple (π1, . . . , πr) of cuspidal (polar-
ized, cohomological) automorphic representations πi of GLmi(AK) ; moreover each
πi satisfies property (H2) in dimension mi and is unramified at v. In particular,
for a z ∈ Zreg, the characteristic polynomial of the crystalline Frobenius of ρz|Gw

coincides with the polynomial Pw(T ) associated to πw|.|(1−m)/2 by the refinement
of Theorem 1.1 recalled in §1.6, and we also have the following :

(d’) If z ∈ Zreg, then the m slopes of the crystalline Frobenius of ρz|Gw are the
si(z) + κi(z), fo i = 1, . . . ,m.

3.1.6. Choice of a refinement. Going back to the representation π introduced above,
if we choose an accessible refinement R of πv, there is a point z0 ∈ Z corresponding
to (π,R).

Lemma 3.3. There exists a refinement R of πv such that the pseudocharacter T
is generically irreducible in a neighborhood of the corresponding point z0.

Proof — We shall eventually show that the conclusion holds for T |Gw. Note
that by construction, for all σ ∈ Hom(Kw,Qp) and i ∈ {1, . . . ,m}, κi,σ(z0) = ki,σ.
Let us first renumber the ϕ′i ∈ Qp

∗ so that |v(ϕ′i) − ki| = minj |v(ϕ′i) − kj |. By
Lemma 3.2 (ii) there is one and only one way to do so, and this being done we
have v(ϕ′1) < v(ϕ′2) < · · · < v(ϕ′m) (strict inequalities). Then consider a transitive
permutation σ of {1, . . . ,m}. We choose the refinement

R = (ϕ′σ(1), . . . , ϕ
′
σ(m)).

Since πv is a full unramified principal series by Lemma 3.2 (i), all the refinements
of πv are accessible, so π together with R defines a point z0.

Before proving the irreducibility property of the lemma, let us observe a combi-
natorial property of this refinement. We have by definition κi(z0) = ki and si(z0) =
v(ϕ′σ(i))− ki. We claim that for any non-empty proper subset I ⊂ {1, . . . ,m},∑

i∈I

si(z0) 6= 0.(6)

Indeed, we compute

|
∑
i∈I

si(z0)| = |
∑
j∈J

v(ϕ′j)−
∑
i∈I

ki| where J = σ(I)

= |(
∑
j∈J

kj −
∑
i∈I

ki) +
∑
j∈J

(v(ϕ′j)− kj)|

≥ |(
∑
j∈J

kj −
∑
i∈I

ki)| −
∑
j∈J

|v(ϕ′j)− kj |

> mc−mc by Lemma 3.2(ii) as I 6= J

= 0.

Let us choose now some affinoid neighborhood Ω of z0 ∈ X on which the si are
constant and in which ZC is Zariski-dense for C =

∑m
i=1 |si(z0)|. We claim that for
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every point z of ZC ∩ Ω, ρz|Gw is irreducible. Indeed if it was not, it would have
a sub-representation of dimension 0 < r < m, and by the weak admissibility of
Dcrys(ρz|Gw) there would exist a subset I ⊂ {1, . . . ,m} of cardinal r, and a subset
J ⊂ {1, . . . ,m} ×Hom(Kw,Qp) with |J | = rd, such that∑

i∈I

(κi(z) + si(z)) = κJ(z).

(here we use that z ∈ Zreg and property (d’) of eigenvarieties.) Since z ∈ ZC , we
see at once that I ×Hom(Kw,Qp) = J . But this implies

0 =
∑
i∈I

si(z),

a contradiction with (6) as si(z) = si(z0) for all i. �

3.1.7. End of the proof. Let Ω ⊂ X be the neighborghood defined above of the
point z0, and let A be a complete discrete valuation ring, with a map of SpecA to
the spectrum of the rigid local ring Oz0 of X at z0 which sends the special point of
SpecA to z0 and the generic point to the generic point of any irreducible component
of Ω containing z0. Let us call L the fraction field of A and m its maximal ideal.
By pulling back the pseudocharacter T over A, we get a representation ρ : GK →
GLm(A) such that ρ⊗L is absolutely irreducible and satisfies (1) (for χ = Qp(m−1))
and

ρ̄ss =
{
ρΠ,λ if m = n,

ρΠ,λ(µ|.|−1/2)⊕ (χ|.|(1−m)/2) if m = n+ 1.

Since ρ ⊗ L is absolutely irreducible and satisfies (1) it has a sign that can only
be +1. Hence it is good, and so is ρ̄ss by Prop. 2.4, with respect to ωm−1. Hence
ρΠ,λ is good with respect to ωn−1 by Lemmas 2.2 and 2.1, as ψ := µ|.|−1/2 satisfies
ψ⊥ = ψω, QED.

3.2. Weakening of the hypothesis (H3), removal of (H2). We consider the
following variant of (H3)

(H4) Each place of F above p splits in K, and if w is such a place then Πw has
a non-zero vector invariant by a Iwahori subgroup of GLn(Kw).

Theorem 3.4. With the supplementary hypotheses (H1) and (H4), Theorem 1.2
holds.

We shall argue by induction on n ≥ 1, there is nothing to show if n = 1.
Let U(n) be the n-variables unitary group over F attached to K/F that is quasi-

split at every finite place and compact at every infinite place. Hasse’s principle
shows that this group exists, even if n is even, by condition (H1c) (see e.g. [ChH,
Lemma 3.1]). Moreover, condition (H1) and Labesse’s base change theorem also
ensures that Π descends to an automorphic representation π for U(n). Again, π
is unramified at non split finite places of K/F and for each complex place w of K
above a real place v of F , πv has the same infinitesimal character as Πw (under the
natural identification U(n)(Kw) ' GLn(C)).
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Let U =
∏

v Uv ⊂ U(n)(AF,f ) be a compact open subgroup such that πU 6= 0,
and assume that Uv = Iv for the each place v above p, and that Uv is hyperspecial
for each place v of K that is not split over F . Let X be the eigenvariety attached
to U , to all the finite places of F above p (in the setting of [Ch2, §1.1], Sp is the set
of all the places above p), and ι∞, ιp. Now X has equidimension n[F : Q] but all
what we said for the eigenvarieties of U(m) in § 3.1.5 also applies to this X with
minor changes, the only difference being that there is no prefered place v above
p. Precisely, let us fix once and for all a place v of F above p, as well as a place
w of K above v. Then (i), (ii), (iii), (a), (b) and (c) hold (with m replaced by
n). To be perfectly correct for (i) and (a), we have to precise that Z (resp. Zreg)
parameterizes now the refined automorphic representations (π,R) of U(n) such that
πU 6= 0 (resp. such that πv is un ramified and such that the infinitesimal character
of πs is sufficiently regular for all the real places s of F ).

Let z0 ∈ Z be the point corresponding to π together with some accessible refine-
ment of πx for each place x of F above p. As a general fact, there is always such a
refinement (for each x) and we choose them anyhow here.

Let c be the maximum of the |si(z0)| and C > nc. Let Ω ⊂ X be an open
affinoid of X containing z0, in which ZC is Zariski-dense, and over which the si are
constant. We claim that for z ∈ ZC , ρz is good. Indeed, let Π(z) be Labesse’s base
change of π(z) to GLn(AK). As z ∈ Zreg, and as explained in §3.1.5, there exists
a decomposition n = n1 + · · ·+ nr and cuspidal automorphic representations Πi of
GLni(AK), satisfying (H1b), (H2) and unramified at v, such that

ρz =
r⊕

i=1

ρΠi,λ ⊗ χi,

for some characters χi : GK → Qp
∗ such that χ⊥i = χiω

n−ni . If r > 1, then ρz is
good by induction and Lemma 2.1. If r = 1, then Π(z) is cuspidal and it satisfies
(H2) and (H3) by construction, so ρz is good by Theorem 3.1. (To check (H3),
remark that for such a z, and for each i ∈ {1, . . . , n}, we have Minj(si(z) + ki(z)−
kj(z)) = si(z) = si(z0).)

Let W be any irreducible component of Ω containing z0, and Frac(W ) its as-
sociated function field. As ZC is Zariski-dense in Ω we may find a z ∈ ZC ∩W
such that the pseudocharacters Tz and T ⊗O(Ω) Frac(W ) have the same number
of irreducible factors. Such factors are necessarily absolutely irreducible here, by
[BCh, Thm. 1.4.4 (iii)]. Arguing as in the preceding section, let A be a complete
discrete valuation ring with a map of SpecA to SpecOz which sends the special
point of SpecA to z and its generic point to Frac(W ), and let ρ : GK → GLn(A)
be a representation with trace T such that ρ ⊗A L is a direct sum of absolutely
irreducible, distinct, representations (use e.g. [BCh, Prop. 1.6.1]). As we saw,
ρ̄ = ρz is good, hence so is ρ ⊗A L by Prop.2.4, as well as ρ ⊗A Frac(W ) for any
irreducible component W containing z0. But arguing back now at the point z0 as
in the preceding section, we obtain that ρz0 = ρΠ,λ itself is good as a specialization
of a good representation, and we are done.

3.3. Removal of Hypotheses (H1) and (H4). We now prove Theorem 1.2.
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Lemma 3.5. Let L be a finite extension of Qp and ρ : GK −→ GLn(L) a continuous
representation which is a direct sum of absolutely irreducible representations. There
is a finite Galois extension M/K such that for every finite extension K ′/K linearly
disjoint from M , ρ and ρ|GK′ have the same number of irreducible factors, and the
irreducible factors of ρ|GK′ are absolutely irreducible.

Proof — We can assume without loss of generality that ρ is absolutely irreducible.
In particular, there exists n2 elements g1, . . . , gn2 such that the ρ(gi)’s generate
Mn(L) as a L-vector space. Since GK has a basis of neighbourhoods of 1 that are
open normal subgroups, and since ρ and the determinant are continuous, there is
an open normal subgroup U of GK such that if for all i = 1, . . . , n2, g′i ∈ giU , then
the ρ(g′i)’s still generate Mn(L). Set M = K̄U , so M is a finite Galois extension of
K.

If K ′ is a finite extension of K which is linearly disjoint from M , so is its Galois
closure. Hence we may assume that K ′ is Galois over K. Thus Gal(K ′M/K ′) is
naturally isomorphic to Gal(K/M). For every i, choose g′i in GK′ whose image in
Gal(K ′M/K ′) is sent to gi by the above isomorphism. This implies that g′ig

−1
i ∈ U ,

hence the ρ|GK′(g′i)’s generate Mn(L), and ρ|GK′ is absolutely irreducible. �

By [ChH, Prop. 4.1.1 and Thm 4.2.2] for any finite extension M/K there exists a
totally real solvable Galois extension F ′/F such that K ′ = KF ′ is linearly disjoint
to M and such that Arthur-Clozel’s base change ΠK′ and K ′/F ′ satisfy hypotheses
(H1) and (H4). We apply this to an M as in the lemma above. By Theorem 3.4
we know that (ρΠ,λ)|G′K is good, and by the lemma above, that it has the same
number of irreducible components as ρΠ,λ.

Hence by Lemma 2.3 ρΠ,λ is good, QED.
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Gaëtan Chenevier, C.N.R.S, Centre de Mathématiques Laurent Schwartz, École
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