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Let E be a number field, p a prime and let S be a finite set of places of E
containing the primes above p and ∞. Consider the set of isomorphism classes
of continuous semi-simple representations ρ : GE,S → GLd(Qp) of some fixed
dimension d, where GE,S is the Galois group of a maximal algebraic extension of
E unramified outside S. This is the set of Qp-points of a natural rigid analytic
space X over Qp, an interesting subset of which is the set X g of the ρ which are
geometric, in the sense that they occur as a subquotient of Hi

et(XE , Qp)(m) for
some proper smooth variety X over E, some degree i ≥ 0 and some Tate twist
m ∈ Z. Here are two basic, but presumably difficult, open questions about X g:

Does X g have some specific structure ? Can we describe its Zariski-closure in X ?

A trivial observation is that X g is countable, so it contains no subvariety of
dimension > 0. When d = 1, class-field theory and the theory of complex multi-
plication describe X g and X , in particular X g is Zariski-dense in X if Leopold’s
conjecture holds at p. When d > 1, the situation is actually much more interesting,
and has been first studied by Hida, Mazur, Gouvêa and Coleman when E = Q
and d = 2. A discovery of Gouvêa and Mazur is that in the most ”regular” odd
connected components of X , which are open unit balls of dimension 3, then X g

is still Zariski-dense. Furthermore, it belongs to an intriguing subset of X they
call the infinite fern [4], which is a kind of fractal 2-dimensional object in X built
from Coleman’s theory of finite slope families of modular eigenforms.

The aim of this talk is to present an extension of these results to the three-
dimensional case d = 3, mostly by studying the contribution of X g coming from
the theory of Picard modular surfaces. From now on E is a quadratic imaginary
field, p is an odd prime that splits in E, c is the non trivial element of Gal(E/Q)
and the set S is stable by c. Let q be a power of p and fix a continuous absolutely
irreducible Galois representation

ρ : GE,S → GL3(Fq)

of type U(3), i.e. such that ρ∨ ' ρc (the latter being the outer conjugate by
c). This last condition is equivalent to ask that ρ extends to a representation
ρ̃ : GQ,S → GL3(Fq) o Gal(E/Q) inducing the natural map GQ,S → Gal(E/Q)
and where c acts on GL3 via g 7→ tg−1. Let us denote by R(ρ) the universal GE,S-
deformation of type U(3) of ρ to the category of finite local Zq = W (Fq)-algebras
with residue field Fq. This ring R(ρ) might be extremely complicated in general,
but we shall not be interested in these complications and rather assume that:

(H) H2(GQ,S , ad(ρ̃)) = 0.

In this case, one can show that R(ρ) is formally smooth over Zq of relative di-
mension 6. In particular, its analytic generic fiber X (ρ) in the sense of Berthelot
is the open unit ball of dimension 6 over Qq. This space is actually a connected
component of the locus of type U(3) of X . By definition its closed points x pa-
rameterize the lifts ρx of ρ such that ρ∨x ' ρc

x. Such an x will be said modular
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if ρx is isomorphic to a p-adic Galois representation ρΠ attached by Rogawski to
some cohomological cuspidal automorphic representation Π of GL3(AE) such that
Π∨ ' Πc and which is unramified outside S and at the two places above p. These
Galois representations are cut out from the étale cohomology of (some sheaves
over) the Picard modular surfaces of E. We say that ρ is modular if there is at
least one modular point in X (ρ). It might well be the case that each ρ is modular
(a variant of Serre’s conjecture).

Theorem A: Assume that ρ is modular and that (H) holds. Then the modular
points are Zariski-dense1 in X (ρ).

Example: If A is an elliptic curve over Q, then ρ := (Symm2A[p])(−1) is modular

of type U(3). Assume that E = Q(i), p = 5 and let S be the set of primes dividing

10 · condA · ∞, then (H) holds whenever A is in the class labeled as 17A, 21A, 37B,

39A, 51A, 53A, 69A, 73A, 83A, or 91B in Cremona’s tables (this depends on some

class number computations by PARI relying on GRH).

A first important step in the proof of Theorem A is a result from the theory of
p-adic families of automorphic forms for the definite unitary group U(3) ([2],[1]).
Fix v a prime of E dividing p, so that Ev = Qp. Define a refined modular point as
a pair (ρΠ, (ϕ1/pk1 , ϕ2/pk2 , ϕ3/pk3)) in X (ρ)×G3

m where ρΠ is a modular Galois
representation associated to Π, k1 < k2 < k3 are the Hodge-Tate numbers of ρΠ,v,
and where (ϕ1, ϕ2, ϕ3) is an ordering of the eigenvalues of the crystalline Frobenius
acting on Dcris(ρΠ,v) (recall that ρΠ,v := (ρΠ)|GEv

is a crystalline representation
of GEv

= GQp
).

Define the eigenvariety E(ρ) ⊂ X (ρ) × G3
m

as the Zariski-closure of the refined modular
points. The main theorem from the theory of
p-adic families of automorphic forms for U(3)
asserts that E(ρ) has equi-dimension 3. By con-
struction the refined modular points are Za-
riski-dense in E(ρ), and even have some accu-
mulation property. The complete infinite fern
of type U(3) is the set theoretic projection of
E(ρ) in X (ρ). At a modular point in X (ρ) there
are in general 6 branches of the fern passing
through it, as there are in general six ways to

refine a given modular point, hence 6 points in E(ρ) above it, so we get the above
picture. (In any dimension d: dimX (ρ) = d(d + 1)/2, dim E(ρ) = d and there are
up to d! ways to refine a given modular point).

1By Zariski-dense we simply mean here that if t1, t2, . . . , t6 are parameters of the ball X (ρ),

then there is no nonzero power series in Cp[[t1, . . . , t6]] converging on the whole of X (ρ) and that

vanishes at all the modular points.
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Theorem B: There exist modular points x ∈ X (ρ) such that ρx|GEv
is irre-

ducible and has 6= crystalline Frobenius eigenvalues. If x is such a point, then⊕
y 7→x,y∈E(ρ)

Ty(E(ρ)) −→ Tx(X (ρ))

(the map induced on tangent space) is surjective.

Considering the Zariski-closure Z in X (ρ) of the modular points satisfying the first
part of Theorem B, and applying Theorem B to a smooth such point of Z, we get
Theorem A. The first part of Theorem B is a simple application of eigenvarieties,
but its second part is rather deep. It relies on a detailled study of the properties at
p of the family of Galois representations over E(ρ), especially around non-critical
refined modular points, as previously studied in [1] (extending some works of Kisin
and Colmez in dimension 2). There are several important ingredients in the proof
but we end this short note by focusing on a crucial and purely local one.

Let L be a finite extension of Qp and let V be a crystalline representation of
Gal(Qp/Qp) of any L-dimension d. Assume V is irreducible, with distinct Hodge-
Tate numbers, and that the eigenvalues ϕi of the crystalline Frobenius on Dcrys(V )
belong to L and satisfy ϕiϕ

−1
j 6= 1, p for all i 6= j. Let XV be the deformation

functor of V to the category of local artinian L-algebras with residue field L. It is
pro-representable and formally smooth of dimension d2+1. For each ordering F of
the ϕi (such an ordering is called a refinement), we defined in [1] the F-trianguline
deformation subfunctor XV,F ⊂ XV , whose dimension is d(d + 1)/2 + 1. Roughly,
the choice of F corresponds to a choice of a triangulation of the (ϕ, Γ)-module of
V over the Robba ring, and XV,F parameterizes the deformations such that this
triangulation lifts. When the ϕ-stable complete flag of Dcris(V ) defined by F is in
general position compared to the Hodge filtration, we say that F is non-critical.

Theorem C: Assume that d ”well-chosen” refinements of V are non-critical
(e.g. all of them), or that d ≤ 3. Then on tangent spaces we have an equality

XV (L[ε]) =
∑
F
XV,F (L[ε]).

In other words ”any first order deformation of a generic crystalline representation
is a linear combination of trianguline deformations”. See [3] for proofs of the
results of this note.
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