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Let E be a number field, p a prime and let S be a finite set of places of E
containing the primes above p and co. Consider the set of isomorphism classes
of continuous semi-simple representations p : Gg,s — GLd(@p) of some fixed
dimension d, where G s is the Galois group of a maximal algebraic extension of
E unramified outside S. This is the set of @p—points of a natural rigid analytic
space X over @, an interesting subset of which is the set X9 of the p which are
geometric, in the sense that they occur as a subquotient of HE (X, Q,)(m) for
some proper smooth variety X over E, some degree ¢+ > 0 and some Tate twist
m € Z. Here are two basic, but presumably difficult, open questions about X'9:

Does X9 have some specific structure ? Can we describe its Zariski-closure in X ?

A trivial observation is that X9 is countable, so it contains no subvariety of
dimension > 0. When d = 1, class-field theory and the theory of complex multi-
plication describe X9 and X, in particular X9 is Zariski-dense in X" if Leopold’s
conjecture holds at p. When d > 1, the situation is actually much more interesting,
and has been first studied by Hida, Mazur, Gouvéa and Coleman when £ = Q
and d = 2. A discovery of Gouvéa and Mazur is that in the most "regular” odd
connected components of X', which are open unit balls of dimension 3, then X9
is still Zariski-dense. Furthermore, it belongs to an intriguing subset of X’ they
call the infinite fern [4], which is a kind of fractal 2-dimensional object in X’ built
from Coleman’s theory of finite slope families of modular eigenforms.

The aim of this talk is to present an extension of these results to the three-
dimensional case d = 3, mostly by studying the contribution of X9 coming from
the theory of Picard modular surfaces. From now on E is a quadratic imaginary
field, p is an odd prime that splits in E, ¢ is the non trivial element of Gal(E/Q)
and the set S is stable by c¢. Let ¢ be a power of p and fix a continuous absolutely
irreducible Galois representation

p:Ggs — GL3(Fy)

of type U(3), i.e. such that p¥ =~ p° (the latter being the outer conjugate by
¢). This last condition is equivalent to ask that p extends to a representation
p: Ggs — GL3(F,) x Gal(E/Q) inducing the natural map Gg s — Gal(E/Q)
and where ¢ acts on GL3 via g — ‘g~!. Let us denote by R(p) the universal Gg s-
deformation of type U(3) of p to the category of finite local Z, = W (F)-algebras
with residue field F,. This ring R(p) might be extremely complicated in general,
but we shall not be interested in these complications and rather assume that:

(H) H?*(Gg.s,ad(p)) = 0.

In this case, one can show that R(p) is formally smooth over Z, of relative di-

mension 6. In particular, its analytic generic fiber X (p) in the sense of Berthelot

is the open unit ball of dimension 6 over Q. This space is actually a connected

component of the locus of type U(3) of X. By definition its closed points z pa-

rameterize the lifts p, of p such that pY ~ p¢. Such an z will be said modular
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if p, is isomorphic to a p-adic Galois representation pr; attached by Rogawski to
some cohomological cuspidal automorphic representation IT of GL3(Ag) such that
IIV ~ II¢ and which is unramified outside S and at the two places above p. These
Galois representations are cut out from the étale cohomology of (some sheaves
over) the Picard modular surfaces of E. We say that p is modular if there is at
least one modular point in X'(p). It might well be the case that each 7 is modular
(a variant of Serre’s conjecture).

Theorem A: Assume that p is modular and that (H) holds. Then the modular
points are Zariski-dense' in X (p).

Example: If A is an elliptic curve over Q, then p := (SymmZA[p])(—1) is modular
of type U(3). Assume that E = Q(i), p = 5 and let S be the set of primes dividing
10 - condA - oo, then (H) holds whenever A is in the class labeled as 1TA, 21A, 37B,
39A, 51A, 53A, 69A, 73A, 83A, or 91B in Cremona’s tables (this depends on some
class number computations by PARI relying on GRH).

A first important step in the proof of Theorem A is a result from the theory of
p-adic families of automorphic forms for the definite unitary group U(3) ([2],[1]).
Fix v a prime of E dividing p, so that E, = Q,. Define a refined modular point as
a pair (pr, (¢1/P", 02/, @3/p")) in X(p) x G3, where pyy is a modular Galois
representation associated to II, k1 < k2 < k3 are the Hodge-Tate numbers of pry ,,
and where (1, 2, p3) is an ordering of the eigenvalues of the crystalline Frobenius
acting on Deyis(pm,y) (recall that pr, = (PH)\GEv is a crystalline representation
of GEW = GQP)'

S Define the eigenvariety £(p) C X(p) x G2,
o Gon as the Zariski-closure of the refined modular
gy e points. The main theorem from the theory of

e

e | p-adic families of automorphic forms for U(3)

e

asserts that £(p) has equi-dimension 3. By con-
struction the refined modular points are Za-
: riski-dense in £(p), and even have some accu-
mulation property. The complete infinite fern
of type U(3) is the set theoretic projection of
E(p) in X(p). At a modular point in X'(p) there
are in general 6 branches of the fern passing
through it, as there are in general six ways to
refine a given modular point, hence 6 points in £(p) above it, so we get the above
picture. (In any dimension d: dim X (p) = d(d+ 1)/2, dimE(p) = d and there are
up to d! ways to refine a given modular point).

1By Zariski-dense we simply mean here that if ¢1, t2, ..., t are parameters of the ball X (p),
then there is no nonzero power series in Cp[[t1, ..., ts]] converging on the whole of X'(5) and that
vanishes at all the modular points.



Theorem B: There exist modular points x € X (p) such that py, s irre-
ducible and has # crystalline Frobenius eigenvalues. If x is such a point, then

P 71,ER) — T(Xm)

y—z,y€E(p)
(the map induced on tangent space) is surjective.

Considering the Zariski-closure Z in X (p) of the modular points satisfying the first
part of Theorem B, and applying Theorem B to a smooth such point of Z, we get
Theorem A. The first part of Theorem B is a simple application of eigenvarieties,
but its second part is rather deep. It relies on a detailled study of the properties at
p of the family of Galois representations over £(p), especially around non-critical
refined modular points, as previously studied in [1] (extending some works of Kisin
and Colmez in dimension 2). There are several important ingredients in the proof
but we end this short note by focusing on a crucial and purely local one.

Let L be a finite extension of @, and let V' be a crystalline representation of
Gal(@p /Q,) of any L-dimension d. Assume V is irreducible, with distinct Hodge-
Tate numbers, and that the eigenvalues ¢; of the crystalline Frobenius on Dys(V')
belong to L and satisfy cpl-apjfl # 1,p for all i # j. Let Xy be the deformation
functor of V' to the category of local artinian L-algebras with residue field L. It is
pro-representable and formally smooth of dimension d?+ 1. For each ordering F of
the ¢; (such an ordering is called a refinement), we defined in [1] the F-trianguline
deformation subfunctor Xy, C Xy, whose dimension is d(d + 1)/2 4+ 1. Roughly,
the choice of F corresponds to a choice of a triangulation of the (¢, I')-module of
V' over the Robba ring, and Xy, r parameterizes the deformations such that this
triangulation lifts. When the p-stable complete flag of D,is(V') defined by F is in
general position compared to the Hodge filtration, we say that F is non-critical.

Theorem C: Assume that d "well-chosen” refinements of V' are non-critical
(e.g. all of them), or that d < 3. Then on tangent spaces we have an equality

Xy (L)) =) Xvr(L[e]).
F

In other words ”any first order deformation of a generic crystalline representation
is a linear combination of trianguline deformations”. See [3] for proofs of the
results of this note.
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