The infinite fern of Galois representations of type U(3) GAËTAN CHENEVIER

Let E be a number field, p a prime and let S be a finite set of places of E containing the primes above p and ∞ . Consider the set of isomorphism classes of continuous semi-simple representations $\rho : G_{E,S} \to \operatorname{GL}_d(\overline{\mathbb{Q}}_p)$ of some fixed dimension d, where $G_{E,S}$ is the Galois group of a maximal algebraic extension of E unramified outside S. This is the set of $\overline{\mathbb{Q}}_p$ -points of a natural rigid analytic space \mathcal{X} over \mathbb{Q}_p , an interesting subset of which is the set \mathcal{X}^g of the ρ which are geometric, in the sense that they occur as a subquotient of $H^i_{\text{et}}(X_{\overline{E}}, \overline{\mathbb{Q}}_p)(m)$ for some proper smooth variety X over E, some degree $i \geq 0$ and some Tate twist $m \in \mathbb{Z}$. Here are two basic, but presumably difficult, open questions about \mathcal{X}^g :

Does \mathcal{X}^g have some specific structure ? Can we describe its Zariski-closure in \mathcal{X} ?

A trivial observation is that \mathcal{X}^g is countable, so it contains no subvariety of dimension > 0. When d = 1, class-field theory and the theory of complex multiplication describe \mathcal{X}^g and \mathcal{X} , in particular \mathcal{X}^g is Zariski-dense in \mathcal{X} if Leopold's conjecture holds at p. When d > 1, the situation is actually much more interesting, and has been first studied by Hida, Mazur, Gouvêa and Coleman when $E = \mathbb{Q}$ and d = 2. A discovery of Gouvêa and Mazur is that in the most "regular" odd connected components of \mathcal{X} , which are open unit balls of dimension 3, then \mathcal{X}^g is still Zariski-dense. Furthermore, it belongs to an intriguing subset of \mathcal{X} they call the infinite fern [4], which is a kind of fractal 2-dimensional object in \mathcal{X} built from Coleman's theory of finite slope families of modular eigenforms.

The aim of this talk is to present an extension of these results to the threedimensional case d = 3, mostly by studying the contribution of \mathcal{X}^g coming from the theory of Picard modular surfaces. From now on E is a quadratic imaginary field, p is an odd prime that splits in E, c is the non trivial element of $\operatorname{Gal}(E/\mathbb{Q})$ and the set S is stable by c. Let q be a power of p and fix a continuous absolutely irreducible Galois representation

$$\overline{\rho}: G_{E,S} \to \mathrm{GL}_3(\mathbb{F}_q)$$

of type U(3), i.e. such that $\overline{\rho}^{\vee} \simeq \overline{\rho}^c$ (the latter being the outer conjugate by c). This last condition is equivalent to ask that $\overline{\rho}$ extends to a representation $\tilde{\rho} : G_{\mathbb{Q},S} \to \operatorname{GL}_3(\mathbb{F}_q) \rtimes \operatorname{Gal}(E/\mathbb{Q})$ inducing the natural map $G_{\mathbb{Q},S} \to \operatorname{Gal}(E/\mathbb{Q})$ and where c acts on GL_3 via $g \mapsto {}^t g^{-1}$. Let us denote by $R(\overline{\rho})$ the universal $G_{E,S}$ -deformation of type U(3) of $\overline{\rho}$ to the category of finite local $\mathbb{Z}_q = W(\mathbb{F}_q)$ -algebras with residue field \mathbb{F}_q . This ring $R(\overline{\rho})$ might be extremely complicated in general, but we shall not be interested in these complications and rather assume that:

$$(H) H^2(G_{\mathbb{Q},S},\mathrm{ad}(\tilde{\rho})) = 0.$$

In this case, one can show that $R(\overline{\rho})$ is formally smooth over \mathbb{Z}_q of relative dimension 6. In particular, its analytic generic fiber $\mathcal{X}(\overline{\rho})$ in the sense of Berthelot is the open unit ball of dimension 6 over \mathbb{Q}_q . This space is actually a connected component of the locus of type U(3) of \mathcal{X} . By definition its closed points x parameterize the lifts ρ_x of $\overline{\rho}$ such that $\rho_x^{\vee} \simeq \rho_x^c$. Such an x will be said *modular* if ρ_x is isomorphic to a *p*-adic Galois representation ρ_{Π} attached by Rogawski to some cohomological cuspidal automorphic representation Π of $\operatorname{GL}_3(\mathbb{A}_E)$ such that $\Pi^{\vee} \simeq \Pi^c$ and which is unramified outside *S* and at the two places above *p*. These Galois representations are cut out from the étale cohomology of (some sheaves over) the Picard modular surfaces of *E*. We say that $\overline{\rho}$ is modular if there is at least one modular point in $\mathcal{X}(\overline{\rho})$. It might well be the case that each $\overline{\rho}$ is modular (a variant of Serre's conjecture).

Theorem A: Assume that $\overline{\rho}$ is modular and that (H) holds. Then the modular points are Zariski-dense¹ in $\mathcal{X}(\overline{\rho})$.

Example: If A is an elliptic curve over \mathbb{Q} , then $\overline{\rho} := (\text{Symm}^2 A[p])(-1)$ is modular of type U(3). Assume that $E = \mathbb{Q}(i)$, p = 5 and let S be the set of primes dividing $10 \cdot \text{condA} \cdot \infty$, then (H) holds whenever A is in the class labeled as 17A, 21A, 37B, 39A, 51A, 53A, 69A, 73A, 83A, or 91B in Cremona's tables (this depends on some class number computations by PARI relying on GRH).

A first important step in the proof of Theorem A is a result from the theory of p-adic families of automorphic forms for the definite unitary group U(3) ([2],[1]). Fix v a prime of E dividing p, so that $E_v = \mathbb{Q}_p$. Define a refined modular point as a pair $(\rho_{\Pi}, (\varphi_1/p^{k_1}, \varphi_2/p^{k_2}, \varphi_3/p^{k_3}))$ in $\mathcal{X}(\bar{p}) \times \mathbb{G}_m^3$ where ρ_{Π} is a modular Galois representation associated to Π , $k_1 < k_2 < k_3$ are the Hodge-Tate numbers of $\rho_{\Pi,v}$, and where $(\varphi_1, \varphi_2, \varphi_3)$ is an ordering of the eigenvalues of the crystalline Frobenius acting on $D_{\text{cris}}(\rho_{\Pi,v})$ (recall that $\rho_{\Pi,v} := (\rho_{\Pi})_{|G_{E_v}}$ is a crystalline representation of $G_{E_v} = G_{\mathbb{Q}_p}$).

Define the eigenvariety $\mathcal{E}(\overline{\rho}) \subset \mathcal{X}(\overline{\rho}) \times \mathbb{G}_m^3$ as the Zariski-closure of the refined modular points. The main theorem from the theory of *p*-adic families of automorphic forms for U(3)asserts that $\mathcal{E}(\overline{\rho})$ has equi-dimension 3. By construction the refined modular points are Zariski-dense in $\mathcal{E}(\overline{\rho})$, and even have some accumulation property. The complete infinite fern of type U(3) is the set theoretic projection of $\mathcal{E}(\overline{\rho})$ in $\mathcal{X}(\overline{\rho})$. At a modular point in $\mathcal{X}(\overline{\rho})$ there are in general 6 branches of the fern passing through it, as there are in general six ways to

refine a given modular point, hence 6 points in $\mathcal{E}(\bar{\rho})$ above it, so we get the above picture. (In any dimension d: dim $\mathcal{X}(\bar{\rho}) = d(d+1)/2$, dim $\mathcal{E}(\bar{\rho}) = d$ and there are up to d! ways to refine a given modular point).

¹By Zariski-dense we simply mean here that if t_1, t_2, \ldots, t_6 are parameters of the ball $\mathcal{X}(\overline{\rho})$, then there is no nonzero power series in $\mathbb{C}_p[[t_1, \ldots, t_6]]$ converging on the whole of $\mathcal{X}(\overline{\rho})$ and that vanishes at all the modular points.

Theorem B: There exist modular points $x \in \mathcal{X}(\overline{\rho})$ such that $\rho_{x|G_{E_v}}$ is irreducible and has \neq crystalline Frobenius eigenvalues. If x is such a point, then

$$\bigoplus_{\rightarrow x, y \in \mathcal{E}(\overline{\rho})} T_y(\mathcal{E}(\overline{\rho})) \longrightarrow T_x(\mathcal{X}(\overline{\rho}))$$

 $y \mapsto x, y \in \mathcal{E}(\overline{\rho})$ (the map induced on tangent space) is surjective.

Considering the Zariski-closure Z in $\mathcal{X}(\overline{\rho})$ of the modular points satisfying the first part of Theorem B, and applying Theorem B to a smooth such point of Z, we get Theorem A. The first part of Theorem B is a simple application of eigenvarieties, but its second part is rather deep. It relies on a detailled study of the properties at p of the family of Galois representations over $\mathcal{E}(\overline{\rho})$, especially around non-critical refined modular points, as previously studied in [1] (extending some works of Kisin and Colmez in dimension 2). There are several important ingredients in the proof but we end this short note by focusing on a crucial and purely local one.

Let L be a finite extension of \mathbb{Q}_p and let V be a crystalline representation of $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ of any L-dimension d. Assume V is irreducible, with distinct Hodge-Tate numbers, and that the eigenvalues φ_i of the crystalline Frobenius on $D_{\operatorname{crys}}(V)$ belong to L and satisfy $\varphi_i \varphi_j^{-1} \neq 1, p$ for all $i \neq j$. Let \mathcal{X}_V be the deformation functor of V to the category of local artinian L-algebras with residue field L. It is pro-representable and formally smooth of dimension d^2+1 . For each ordering \mathcal{F} of the φ_i (such an ordering is called a *refinement*), we defined in [1] the \mathcal{F} -trianguline deformation subfunctor $\mathcal{X}_{V,\mathcal{F}} \subset \mathcal{X}_V$, whose dimension is d(d+1)/2 + 1. Roughly, the choice of \mathcal{F} corresponds to a choice of a triangulation of the (φ, Γ) -module of V over the Robba ring, and $\mathcal{X}_{V,\mathcal{F}}$ parameterizes the deformations such that this triangulation lifts. When the φ -stable complete flag of $D_{\operatorname{cris}}(V)$ defined by \mathcal{F} is in general position compared to the Hodge filtration, we say that \mathcal{F} is *non-critical*.

Theorem C: Assume that d "well-chosen" refinements of V are non-critical (e.g. all of them), or that $d \leq 3$. Then on tangent spaces we have an equality

$$\mathcal{X}_V(L[\varepsilon]) = \sum_{\mathcal{F}} \mathcal{X}_{V,\mathcal{F}}(L[\varepsilon]).$$

In other words "any first order deformation of a generic crystalline representation is a linear combination of trianguline deformations". See [3] for proofs of the results of this note.

References

- Bellaïche, J. & Chenevier, G. Families of Galois representations and Selmer groups, Astérisque 324 (2009).
- [2] Chenevier, G. Familles p-adiques de formes automorphes pour GL(n), Journal für die reine und angewandte Mathematik 570, 143-217 (2004).
- [3] Chenevier, G. Variétés de Hecke des groupes unitaires, Cours Peccot, Collège de France (2008), — http://www.math.polytechnique.fr/~chenevier/courspeccot.html —.
- [4] Mazur, B. An infinite fern in the universal deformation space of Galois representations. Collect. Math. 48, No.1-2, 155-193 (1997).