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1. Introduction

Let E be a number field and S be a nonempty set of places of E. We denote by ES

a maximal algebraic extension of E unramified outside S. Let us fix u ∈ S and an E-
embedding ϕ of ES in an algebraic closure Eu of Eu. In this paper, we are interested in
the following property :

ES is dense in Eu,(PS,u)

where the identification of ES with ϕ(ES) is understood. It is easy to see that (PS,u) is
independent of the choice of ϕ, and equivalent to each of the following properties :

(i) the Eu-vector space generated by ES is Eu,

(ii) the map Gal(Eu/Eu) −→ Gal(ES/E) induced by ϕ is injective,

(iii) for all finite extension K/Eu, there exists a number field E ′/E unramified outside
S and a place u′|u such that K has a continuous embedding into E ′

u′ .

A simple argument using Krasner’s lemma and a weak approximation theorem shows
that (PS,u) is true if S contains almost all the places of E. Moreover, the example of
E = Q and S = {∞} shows that PS,u is not always satisfied. However, the author
doesn’t know whether there was a single example of triple (E, S, u) with S and u finite,
such that (PS,u) was known to be true before this paper. In what follows, we shall not
attempt to discuss any necessary conditions on (E, S, u) for (PS,u) to be true, but we will
look for sufficient ones. A trivial remark is that if u ∈ S ′ ⊂ S, (PS′,u) ⇒ (PS,u), hence
we want to take S as small as possible. The best result we can prove is the following :

Theorem : Assume that E/F is a CM field split above a finite place v of F and write
v = uu′ in E. If l is a rational prime number which is prime to v, and if S is the set of
places of E dividing lv, then (PS,u) is true.

This holds for instance if E is a quadratic imaginary field split at a prime number
v = p, and l is a prime 6= p. It has the following consequence for E = Q :

Corollary : Let p be a prime number, N an integer such that −N is the discriminant
of an imaginary quadratic field in which p splits, and let S be the set of primes dividing
Np∞. Then (PS,p) holds for E = Q.

Explicit examples are given by

(p,N) ∈ {(2, 7), (2, 3.5), (3, 23), (3, 22.5), (3, 11), (5, 22), (5, 11), (7, 3), (11, 23)}
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The theorem above is related to some results of Kuz’min and V.G. Mukhamedov
([MU], [NSW] chapter X, §6, thm. 10.6.4 and the last exercise) concerning p-extensions.
For example, the following result is proved in [MU]. Let p be a prime number and let
E/F be a CM field such that each prime v of F dividing p splits in E. If v is such a
place, then the canonical maps Gal(Fv/Fv)p −→ Gal(E{p,∞}/E)p are injective. In this
statement, Hp denotes the maximal pro-p-quotient of the profinite group H. However,
there seems to be no way to deduce our results from these ones, and our proof is very
different. It seems, moreover, that we cannot deduce the above theorem by induction
from class field theory (or by Grunwald-Wang theorem, [AT][p.105]), the obstructions
given by units forcing us to enlarge S at each step.

Let us describe the strategy of the proof. First, we have to construct a lot of number
fields unramified outside a given set of places S. By a well known result of Grothendieck,
the number fields attached to the l-adic étale cohomology of a proper smooth scheme
X over E satisfy this property if X has good reduction outside S, and if S contains
the primes dividing l. Although it might be very difficult in general to find such an X
(S being given), well chosen Shimura varieties give some interesting examples1. Even
better, their l-adic cohomology is completely described, at least conjecturally, by the
Langlands conjectures, in terms of cohomological automorphic forms. By the work of
many authors, culminating to Harris & Taylor’s proof of local Langlands conjecture for
GLn, a big part of these conjectures is known for the so-called "simple" Shimura varieties,
which are attached to some unitary groups. Thus, we first show that we can construct
cohomological automorphic forms for these groups (or related ones) which are unramified
outside S and of a given ramification type at u (§2.1, §2.2). Then, applying Harris &
Taylor’s theorem [HT], we get number fields with the required local properties (§2.3).
The local Langlands correspondence shows then that we can produce in this way a lot of
them, using unitary groups of all ranks. Two little subtleties arise at this point. First, we
have few control, of course, on the Weil numbers in the above constructions, i.e. on the
unramified part of the local properties at u of the number fields constructed. The second
one is that the automorphic representations we consider must be supercuspidal at u so
that we may apply to them the results of Harris & Taylor. However, a simple trick (§2.4)
allows us to show that we produced sufficiently many number fields to conclude.

In fact, assuming some standard conjectures in the theory of automorphic forms, we
could even get stronger results, as will be explained in a forthcoming sequel of this
paper. Ultimately, we believe that P{∞,p},p is true for E = Q. Although it would be
natural to hope for a proof of such a statement (or of our theorem) without mentioning
any automorphic form, we have no idea how to do it !

Notations : If F and G are two subfields of a given field, we denote by F.G the
subfield generated by F and G. This is also the F -vector space generated by G if G is
algebraic over F ∩ G. If K is a field, K denotes an algebraic closure of K. If K is a

1For instance, X1(l
n) has good reduction outside l, and its genus goes to ∞ with n. However, it only

constructs number fields of GL2-type in some sense, hence they cannot exhaust Ql.
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finite extension of Qp, we denote by Kur ⊂ K its maximal unramified extension. If F is
a number field, AF denotes the adèle ring of F and AF,f its quotient of finite ones.

2. Proof

Let E/F be a CM field as in the statement of the theorem. Let us fix a finite place w
of F dividing the prime number l (in particular w 6= v), and let n ≥ 1 be an integer.

2.1. Some unitary groups. We want to consider unitary groups attached to central
division algebras over E, which are quasisplit at each finite place 6= w, v, and compact
at infinite places for convenience. The relevant "Hasse’s principle" is known and due
to Kneser. We refer to Clozel’s paper [C] §2 for a convenient exposition of Kottwitz’
interpretation of Kneser’s results in the special case of unitary groups.

Lemma 1. There exists a unitary group U(n) over F attached to E/F such that for a
place x of F , U(n)(Fx) is :

(a) quasisplit if x is a finite place not dividing wv,

(b) the group of units of a central division algebra over Fx if x = v.

(c) the compact real unitary group if x is real.

Proof. If n is odd, there is no global obstruction to the existence of such groups by
[C][lemma 2.1]. Assume n is even. By loc.cit. (2.2), the global obstruction lies in Z/2Z

and is the sum of all local ones modulo 2. Assuming given local groups satisfying (a), (b),
and (c), we can make the global invariant vanish by requiring, if necessary, that U(n)(Fw)
is either a non-quasisplit unitary group or the units of a division algebra, because such
groups have local invariant ≡ 1 mod 2 by loc.cit. (2.3). This concludes the proof. �

2.2. Construction of automorphic forms. Let H/F be the unitary group U(n) given
by lemma 1. The group H(Fv) is the group of units of a central division algebra D over
Fv of rank n2. Let π be an irreducible, finite dimensional, complex smooth representation
of D∗.

Lemma 2. There exists an irreducible automorphic representation Π of H(AF ) such
that :

(a) If x 6= v, w is finite place, then Πx is unramified,

(b) Πv ' π ⊗ ψ · det for some unramified character ψ : F ∗
v → C∗,

(c) If x is a real place, Πx is cohomological.

Proof. We first choose, for each finite place x of F , a particular compact open sub-
group Jx of H(Fx). If x is finite and different from v and w, H(Fx) is quasisplit so that
we can take for Jx a maximal compact subgroup which is very special in the sense of
[L, §3.6] (when x does not ramify in E, the hyperspecial compact subgroups of H(Fx)
are very special). For such a place x, an irreducible admissible representation of H(Fx)
will be said to be unramified if it has a nonzero vector invariant by Jx. If x = v, we



4 GAËTAN CHENEVIER

take Jx = OD
∗ and we fix an irreducible constituent τv of π|Jv . If x = w, we take any

compact open subgroup of H(Fx) for Jx. Let J :=
∏

x Jx, it is a compact open subgroup
of H(AF,f). Let τ be the trivial extension to J of the representation τv of Jv, via the
canonical projection J → Jv.

As H∞ := H(F ⊗Q R) is compact, the group H(F ) is discrete in H(AF,f). In particu-
lar, Γ := H(F ) ∩ J is a finite group. For any continuous (finite dimensional), complex
representation W of H∞, we set W (τ) := W ⊗ τ ∗, viewed as an H∞ × J-representation.
By the Peter-Weyl theorem, we can find an irreducible W such that W|Γ contains a
copy of τ , and so a nonzero element v ∈ W (τ)Γ (for the diagonal action of Γ). We
choose moreover an element ϕ ∈ W (τ)∗ such that ϕ(v) = 1. Let h : H∞ × J → C

be the coefficient of W (τ) defined by h(z) := ϕ(z−1.v). By construction, h is smooth,
left Γ-invariant, and generates copies of W (τ)∗ under the right translations by H∞ × J ,
since W (τ) is irreducible. It is nonzero since h(1) = 1. It extends then uniquely to a
smooth map fh : H(AF ) → C null outside the open subset H(F ).(H∞ × J) and satis-
fying fh(γz) = fh(z), ∀γ ∈ H(F ), z ∈ H(AF ), i.e. which is an automorphic form for H.
Let Π ⊂ L2(H(F )\H(AF ),C) be an irreducible constituent of the H(AF )-representation
generated by fh. By definition, Πx is unramified if x 6= v, w is a finite place. Moreover,
Πv is a representation of H(Fv) whose restriction to Jv contains τv. As π is supercuspidal
and as (Jv, τv) is a [H(Fv), π]H(Fv)-type by [BK, prop. 5.4], π and Πv can differ only by
a twist by an unramified character of H(Fv). The condition (c) is automatic since H∞ is
compact. �

2.3. Construction of S-unramified number fields. Let S be the set of places of E
dividing lv. We fix an embedding ϕ : ES → Fv extending the F -embedding E → Fv

given by u. Let us denote by

GE,S := Gal(ES/E), Gv := Gal(Fv/Fv).

Attached to ϕ is a group homomorphism Gv → GE,S. We will also denote by I ⊂ Gv

the inertia subgroup of Gv. We keep the assumption of §2.2, and we choose a Π given
by lemma 2. We assume from now that π corresponds to a supercuspidal representation
of GLn(Fv) by the Jacquet-Langlands correspondence, that is dimC(π) > 1 if n > 1. The
local Langlands correspondence (see [HT]) associates to π an n-dimensional, complex
representation ψπ of the Weil group of Fv, whose restriction to I has finite image. Let
F ur

v (π) ⊂ Fv be the finite extension of F ur
v which is fixed by Ker((ψπ)|I) ⊂ Gv. Recall

that l is prime to v.

Lemma 3. (i) There exists a continuous representation

R : GE,S → GLn(Ql),

such that R|Gv corresponds to Πv · | det |(n−1)/2 by the local Langlands correspondence,

(ii) F ur
v .ϕ(ES) ⊃ F ur

v (π),

Proof. This lemma is a consequence of conditional automorphic base change ([C],
[CL], [HL]), of Jacquet-Langlands correspondence, and of the main theorem of Harris
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& Taylor [HT]. Precisely, let us denote by BC the quadratic base change H → H ′ :=
ResE/F (H ×E F ). By theorem 3.1.3 of [HL] (generalizing [CL, thm. A.5.2] and [C]),
there is a cuspidal automorphic representation Π′ of H ′(AF ) such that Π′

x = BC(Πx)
for each place x 6= w of F . It applies because Π∞ is cohomological, and because H is
attached to a division algebra, as is H(Fv). Note that BC has been defined for unramified
representations at the places x such that H(Fx) is a ramified, quasisplit, unitary group,
in [L, §3.6, prop. 3.6.4]2. In particular, Π′

x is unramified if x /∈ S, Π′
v = Πv ⊗Π∗

v, and Π′
∞

has the base change infinitesimal character. We can then apply3 theorem C of [HT] to
the image JL(Π′) of Π′ by the Jacquet-Langlands correspondence (due to Vignéras, see
[HT, thm. VI.1.1]), and consider

R := Rl(JL(Π′))

given by loc. cit, which proves (i).

We check the second assertion. Let us denote by ES(R) (resp. Fv(R)) the subfield of ES

(resp. Fv) fixed by Ker(R) (resp. Ker(R|Gv)). As Gal(Fv/(Fv.ϕ(ES(R)))) = Ker(R|Gv),
we have Fv.ϕ(ES(R)) = Fv(R) by Galois theory. By (i), F ur

v .Fv(R) is exactly the finite
extension of F ur

v fixed by the kernel of (ψΠv)|I . But by lemma 2, π and Πv · | det |(n−1)/2

only differ by an unramified twist, hence ψΠv ·|det |(n−1)/2 and ψπ are equal when restricted
to I. �

2.4. End of the proof.

Lemma 4. Let Qp ⊂M ⊂ L ⊂ M be a tower of field extensions with M/Qp finite.

(i) Assume that L/M is Galois and Mur.L = M , then L = M .

(ii) Assume that for all finite Galois extension K/M such that Gal(K/M) admits an
injective, irreducible, complex linear representation, we have K ⊂ L ; then L = M .

Proof. (i) Let M ′ := L∩Mur and consider the subgroups I = Gal(M/Mur) and H :=
Gal(M/L) of Γ := Gal(M/M ′), we have IH = Γ. By assumption, H is normal in Γ, hence

H ∩ I = {1} and Γ is the direct product I ×H. In particular, H ' Gal(Mur/M ′) ⊂ Ẑ is
abelian. As a consequence, all tamely ramified extensions of M containing M ′ are Galois
abelian over M ′. Let ω be a uniformizer of M , q be the cardinal of the residue field of
OM , and let m ≥ 1 be an integer. We apply the previous remark to a splitting field M ′

m

of Qm := Xqm−1 − ω over M ′, which is therefore Galois over M ′. As ω is a uniformizer
of M ′, Qm ∈ M ′[X] is irreducible (Eisenstein criteria). In particular, for each m ≥ 1,
Xqm−1 − 1 has all its roots in M ′

m, and even in M ′ as M ′
m/M

′ is totally ramified. So
Mur ⊂M ′ ⊂ L, and L = M .

2As Labesse explained to us, the confusing hypothesis "G is unramified, and KG is hyperspecial" in
prop. 3.6.4 loc. cit. should be understood as "G0 is unramified over Ex, and KG is hyperspecial viewed
as a subgroup of G0(Ex)" (for us G0 = GLn(Ex)), so as to be of any use, and the same proof applies
verbatim. If we didn’t use these facts, we would be obliged to add, in the set S of the theorem, the
places of E ramified above F . Note, however, that this would suffice to get the corollary.

3Note that JL(Π′) is cuspidal by Moeglin-Waldspurger’s description of the discrete spectrum of GLn,
since JL(Π′)v = JL(Π′

v) is supercuspidal.
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We now show (ii). Let K/M be any finite Galois extension, ρ1, . . . , ρt the irreducible,
complex, linear representations of Gal(K/M), and Ki ⊂ K the fixed field of Ker(ρi). By
assumption, Ki ⊂ L. The existence of the (faithful) regular representation of Gal(K/M)
implies that

⋂
i Ker(ρi) = {1}, so that by Galois theory we have K = K1 . . .Kt, and

K ⊂ L. �

Let us finish the proof of the theorem. Let K/Fv be a Galois local field such that
Gal(K/Fv) admits an irreducible injective representation ρ : Gal(K/Fv) → GLn(C). The
local Langlands correspondence and the Jacquet-Langlands correspondence associate to ρ
an irreducible smooth representation π ofD∗/Fv such that ψπ factors through ρ. Lemma 3
(ii) shows that F ur

v .ϕ(ES) ⊃ F ur
v (π). But F ur

v (π) = F ur
v .K, as ρ is injective. We have thus

shown that K ⊂ F ur
v .ϕ(ES). Applying lemma 4 (ii) to M = Fv and L = F ur

v .ϕ(ES), we
conclude that F ur

v .ϕ(ES) = Fv. Applying now lemma 4 (i) to M = Fv and L = Fv.ϕ(ES),
we get our theorem. �
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