
“LEVEL ONE ALGEBRAIC CUSP FORMS OF CLASSICAL GROUPS
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Some remarks and corrections

1. Corrections

p. 51, statement of Lemma 4.5 of Chapter 4. Both G(Af ) (resp. G′(Af )) in the
diagram have to be replaced by G(Ẑ) (resp. G′(Ẑ)).

p. 52, last assertion before the statement of Corollary 4.8 (and a couple of times after).
The multiplicity one theorem for SL2 is not due to Labesse and Langlands, as claimed,
but to Ramakrishnan : see Theorem 4.1.1 of [Rama] (we thank J.-P. Labesse for pointing
this out to us).

p.65, line -14, the displayed formula should be m(V ) = dimV W(E8).

p.71, line -8, the displayed formula should be m(w) = m′(w).

2. Remarks and update

About assumption ?. The stabilization of the twisted trace formula has recently been
completed in a series of works by Moeglin and Waldspurger : see [MW, W]. As a
consequence, the statements of Arthur’s book, as well as the statements of the book here
with a single star, are now unconditionnal.

About assumption ??. Conjecture 3.20 on p. 43 has recently been proved by Taïbi in
[Taïb], relying in particular on recent work of Kaletha [Ka, Kb, Kc] and of Arancibia-
Moeglin-Renard [AMR]. As consequence, all the statements of the book with a double
star, are now unconditionnal as well.

p. 7. Tsushima’s formula has been proved to hold for all odd couples (w, v) with
w > v ≥ 1, and (w, v) 6= (3, 1) indepently by Taïbi [Taïa] and Petersen [P].

The computations of this book have been greatly extended by Taïbi in [Taïa], by using
Chevalley groups rather than definite groups over Z. Taïbi has solved loc. cit. the main
Problem 1 of the introduction up to the dimension n = 15.

p. 53. Proposition 4.9 has also been proved (in greater generality) by Ramakrishnan
in [Ramb][Thm. A].
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