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Preface

Automorphic forms are functions defined on adèle groups, derived from
harmonic analysis, whose theory represents a far-reaching generalization of
the one of modular forms. The famous functoriality conjecture by Langlands
predicts unexpected connections between automorphic forms associated to
quite different groups. Recent advances confirm a part of these general con-
jectures, as well as their refinements by Arthur, for classical groups. The
technicality of the proofs is formidable but in contrast the statements are
fascinating by their extreme beauty, their wide range of applications and to
some extent their simplicity. Our aim in this memoir is to reconsider some
problems of classical origin, of number theory and of the theory of quadratic
forms, from the angle of these recent results.

A special case, in which the Langlands conjectures keep however their
whole flavour, while freed from numerous difficulties existing in general, is
the case where one restricts oneself to the study of automorphic forms un-
ramified at each prime. An alternative terminology is level 1 automorphic
forms. When one deals with classical modular forms or Siegel’s modular
forms, historical examples if there were any of automorphic forms, this as-
sumption means that one considers only forms which are modular for the
groups SL2(Z) or Sp2g(Z), and not for general congruence subgroups.

What is the interest of the case of level 1 automorphic forms is not only the
simplifications it provides, it is also very appealing to the arithmetician by
the mix of rarity and elegance of the examples (again think of the theory of
modular forms for SL2(Z)). Furthermore it is linked, sometimes very directly,
sometimes much less so, sometimes only conjecturally, to the objects of al-
gebraic geometry (varieties, stacks) which are both proper and smooth over
the ring Z of integers and even to motives over the rationals with everywhere
good reduction, objects as fascinating as mysterious.

In this work we aim to study the conjectures by Arthur and Langlands in
this context of level 1 automorphic forms, to give precise formulations of the
statements arising from the work of Arthur in this framework, and to illus-
trate the latter by examples which are more specific but particularly spicy.
We will confront also Arthur’s results to the ones derived from certain more
classical constructions, theta series, which put within reach numerous exam-
ples. Some of these constructions appear to be even richer, as we discovered,
when they are combined with the triality principle. Let us emphasize that
we want to work if possible with groups of large rank, as they best reveal
the riches of the general phenomena, and to move away from the classical
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examples given by “small" groups such as GL2 which have already been the
subject of an extensive literature.

Our illustrations will mainly concern the theory of quadratic forms over
Z which are non-degenerate and positive definite, in other words the the-
ory of even (integral) Euclidean lattices whose determinant is 1 or 2. This
assumption about the determinant exactly means that the associated projec-
tive quadric is smooth over Z, in which case the associated special orthogonal
group is smooth (and even reductive) over Z. In the dimensions (less than
or equal to 25) for which these objects are classified, the concrete problem
we are going to address is the determination, for each prime number p, of
the number of p-neighborhoods in Kneser’s sense, between the classes of such
objects. We will call it the p-neighbor problem.

The p-neighbor problem can be quite elementarily approached: this is the
point of view that we choosed to follow in the introduction (Chapter I) and
also in the organization of the memoir where it will serve as a connecting
thread. This will also make it possible to begin by exposing the rich and
fascinating history of the subject, and to bring out some simple but stri-
king statements which are consequences of our results (dimension 16 case,
determination of the p-neighborhood graphs in dimension 24, affirmation of
the conjecture by Nebe-Venkov about the linear combinations of higher genus
theta series of Niemeier lattices. . . ). However, we think it helpful to explain
upstream our original motivation which was to test Arthur’s results in a
context both concrete and of high dimension, a motivation which will only
be lying in the background in the introduction.

In the rest of this preface, we will explain the place of the p-neighbor
problem in the general landscape of Langlands’ conjectures, or even motives,
as well as the line of thoughts that led us to this problem. We hope that
this enlightenment (or darkening depending upon the viewpoint!) will arouse
the interest of the readers who are maybe less sensitive to the appeal of the
theory of Euclidean lattices. In any case this passage will be inevitable in
order to understand the ideas of the solution we propose of the p-neighbor
problem, which uses in a crucial way the aforementioned recent developments.
This apparent disproportion between the sophistication of methods and the
elementary aspect of the p-neighbor problem is one of the charms of it.

The plan will be as follows. First, we will come back in a more precise
way on the notion of level 1 automorphic form (studied in Chapter IV of
the memoir). After having discussed a few examples, we will present briefly
Langlands’ conjectures, emphasizing a statement that we call the Arthur-
Langlands conjecture (Chapters VI & VIII). We will explain how Langlands

ii



and Arthur motivate this conjecture by means of a certain hypothetical
group, the Langlands group of Z, that we denote by LZ. When one spe-
cializes the statements to algebraic automorphic forms, one may to a large
extent replace LZ with the absolute Galois group of Q. Then we will be
in a position to provide the enlightenments we promised above, and also to
glimpse some of the problems still to be solved once Arthur’s results have
been “put in the engine”.

Automorphic forms of level 1

Let us fix an algebraic group (scheme) G defined and reductive over the
ring Z of integers. This means that G is connected, smooth over Z, and that
its reduction modulo p is reductive over Z/pZ for each prime p. The most
important examples are GLn and the famous Chevalley groups, or the groups
which are isogenous to them such as PGLn, but other examples will play a
role in the sequel.

The adele group G(A) is a locally compact topological group in a natural
way, restricted product of the real Lie group G(R) and of the p-adic Lie
groups G(Qp) over all primes p; the subgroup G(Q) is discrete in G(A). We
denote by Z the neutral component of the center ofG(R) (so Z equals 1 ifG is
semisimple). The homogeneous spaceG(Q)\G(A)/Z is equipped with a finite
G(A)-invariant Borel measure. A central question is to describe the Hilbert
space L2(G(Q)\G(A)/Z) of square integrable automorphic forms of G, seen
as a unitary representation of G(A) for the right translations. According to
our objectives, we shall limit ourselves to considering the subspace

A2(G) = L2(G(Q)\G(A)/Z ·G(Ẑ))

of automorphic forms of level 1, which is nothing else than the subspace
of G(Ẑ)-invariants of L2(G(Q)\G(A)/Z). This is a Hilbert space equipped
with a natural unitary representation of G(R), and for each prime p, with an
action of the convolution ring

Hp(G) = Z[G(Zp)\G(Qp)/G(Zp)],

whose elements are the Hecke operators at p. The aim is to describe A2(G)
equipped with these commuting actions of G(R) and of the commutative ring
H(G) :=

⊗
p Hp(G).

Denote by Π(G) the set of isomorphism classes of objects of the form
π∞ ⊗ πf , with π∞ an irreducible unitary representation of G(R) and πf a
one-dimensional complex representation of the ring H(G). Such a πf may
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equally be viewed as a collection of ring homomorphisms1 πp : Hp(G) →
C; we also talk about systems of eigenvalues of Hecke operators. Denote
moreover by m(π) the multiplicity of π as a subrepresentation of A2(G); it is
finite according to Harish-Chandra. A discrete automorphic representation
of G is an element π of Π(G) with m(π) 6= 0. Let us denote at last by
Πdisc(G) ⊂ Π(G) the subset of those representations. For general reasons, we
may write

(1) A2(G) = A2
disc(G)

⊥
⊕A2

cont(G) with A2
disc(G) '

⊥
⊕

π∈Πdisc(G)
m(π) π.

The space A2
disc(G) contains the subspace A2

cusp(G) of cuspforms, whose
definition is a natural generalization of the one of cuspidal modular form. We
denote by Πcusp(G) ⊂ Πdisc(G) the subset of elements appearing in A2

cusp(G).
The description of the subsets Πcusp(G) ⊂ Πdisc(G) of Π(G) is the heart of
the problem. Indeed, we know since Langlands how to describe the contin-
uous part A2

cont(G) in terms of the A2
cusp(L) where L runs through the Levi

subgroups of all the proper parabolic subgroups of G defined over Z. We will
not be interested in A2

cont(G) in this memoir.

Two examples

The representations π in Πdisc(G) have very different concrete manifes-
tations depending on the nature of their Archimedean component π∞. If
U is an arbitrary irreducible unitary representation of G(R), and if we set
AU(G) := HomG(R)(U,A

2(G)), then we have

AU(G) = HomG(R)(U,A
2
disc(G)) '

⊕
{π ∈ Πdisc(G) |π∞'U}

m(π) πf

This is an H(G)-module in an obvious way, and a finite dimensional complex
vector space according to Harish-Chandra. It is equivalent to describe the
whole of Πdisc(G) or the H(G)-modules AU(G) when U runs through the
unitary dual of G(R).

In order to illustrate these notions, it is instructive to specify them in the
special case of the group G = PGL2.2 If U is a discrete series representation,

1We do not follow here the tradition according to which πp rather denotes the isomor-
phism class of the (irreducible) C[G(Qp)]-submodule of L2(G(Q)\G(A)/Z) generated by
an arbitrary nonzero element of π. The difference is however artificial, as it is a well-kwown
consequence of the commutativity of Hp(G) that the two definitions exactly contain the
same information.

2Following our definitions, we have a canonical isomorphism A2(PGLn)
∼→ A2(GLn).
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say with lowest weight the (even) integer k > 0, then AU(G) naturally iden-
tifies with the space of cuspforms of weight k for SL2(Z) equipped with the
action of the standard Hecke operators on the latter. If U := Us is a princi-
pal or complementary series, parameterized in the usual way by an element
s ∈ iR ∪ [0, 1[, then AUs(G) identifies with the Hecke-module of cuspidal
Maass forms whose eigenvalue is 1−s2

4
for the action of the Laplace opera-

tor on the Poincaré upper half-plane. Contrary to the previous case, these
spaces are very mysterious: Selberg has proved3 AUs(G) = 0 for s > 0, but
we do not know any single exact value of s such that AUs(G) is nonzero, or
whether the latter space can be of dimension > 1. Finally, the unique unitary
representation left of PGL2(R) is, according to Bargmann, the trivial rep-
resentation 1, and we obviously have dimA1(G) = 1 (consider the constant
functions).

Let us now discuss the example which will be of a great importance in
the sequel. Let n ≥ 1 be an integer and Rn the standard Euclidean space
of dimension n. It turns out that the special orthogonal (compact) group of
Rn is of the form G(R) with G reductive over Z if, and only if, the integer n
is congruent to −1, 0 or +1 modulo 8. Let us describe such a G under the
assumption n ≡ 0 mod 8. It is well-known that in this case Rn possesses even
unimodular lattices. Such a lattice L is naturally equipped with an integral
quadratic form, positive definite and non-degenerate over Z. The associate
orthogonal group (scheme) OL is smooth over Z, and its neutral component
SOL is semisimple over Z, with real points SO(Rn).

We will denote by Ln the set of even unimodular lattices in Rn. Any two
elements of Ln are in the same genus, that is are isometric over Zp for each
prime p (hence over the rationals as well, according to Hasse and Minkowski).
This implies first that the space A2(SOL) depends in an inessential way on
the choice of the lattice L. In order to fix ideas, we will focus in this memoir
on the group SOn := SOEn , where En denotes the standard even unimodular
lattice generated by 1

2
(1, . . . , 1) and the n-tuples of integers (x1, . . . , xn) with∑

i xi is even. Another consequence is that we have a natural identification

Ln
∼→ SOn(Q)\SOn(A)/SOn(Ẑ)

compatible with the obvious actions of SOn(R) on both sides. If 1 denotes
the trivial representation of G(R), and if X̃n = SO(Rn)\Ln denotes the
finite set of proper isometry classes of elements in Ln, we have thus natural

3This is an Archimedean analogue of Ramanujan’s conjecture, still open for general
congruence subgroups.
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isomorphisms

A1(SOn) ' {f : X̃n → C} '
⊕

{π ∈ Πdisc(SOn) |π∞'1}

m(π) πf .

The vector space C[X̃n], dual of A1(SOn), is therefore an H(SOn)-module in
a natural way. For instance, it is an exercise to see that the endomorphism
of C[X̃n], mapping the class of a lattice to the sum of the classes of its p-
neighbors, is induced by an element of Hp(SOn) that we will denote by Tp.
The determination of this endomorphism is exactly the problem considered at
the beginning of the introduction.4 Let us add that the spaces AU(SOn), with
U arbitrary (but necessarily finite dimensional), have similar interpretations
as spaces of SOn(R)-equivariant functions Ln → U∗; many such spaces will
play a role in this memoir.

Langlands’ functoriality principle

Let us describe in a rather brief way Langlands’ general conjectures in the
case of level 1 automorphic forms. A starting point is the notion, introduced
by Langlands, of dual group. If G is reductive over Z, its dual in the sense of
Langlands is simply “the” complex linear algebraic reductive group, denoted
Ĝ, whose based root datum is dual (or inverse) to that of GC:

GC GLn PGLn Sp2g PGSp2g SO2n+1 SO2n PGSO2n

Ĝ GLn SLn SO2g+1 Spin2g+1 Sp2n SO2n Spin2n

This group allows first Langlands to parameterize the elements of Π(G).
He observes that the Satake isomorphism provides a canonical bijection, for
each prime p, between the set of ring homomorphisms Hp(G) → C and the
set of semisimple conjugacy classes in Ĝ(C). In a similar way, he interprets
the infinitesimal character (in the sense of Harish-Chandra) of a unitary
representation of G(R) as a semisimple conjugacy class in the Lie algebra
of Ĝ. In the end, to each element π of Π(G) is associated a collection of
conjugacy classes

c(π) = (c∞(π), c2(π), c3(π), · · · )

which uniquely determines πp for each prime p premier, as well as the in-
finitesimal character of π∞, which only leaves finitely many possibilities for

4Actually, we will mostly consider the analogous problem, only slightly simpler, in
which SOn is replaced by On := OEn

, whose only flaw is that it does not quite fit the
conventions adopted here, as On is not connected, but this slight difference is inessential.
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π∞. These parameterizations, recalled in chapter VI, have some very con-
crete aspects. For instance, we will see that for π in Π(SOn) we have the
relation:

(2) πp(Tp) = p
n
2
−1 trace cp(π).

Let G and G′ be two reductive groups over Z, and a morphism of algebraic
groups r : Ĝ → Ĝ′. Langlands’ functoriality principle predicts, for each
constituent π of A2(G), the existence of a constituent π′ of A2(G′) which
corresponds to π, in the sense that we have an equality of conjugacy classes
r(cv(π)) = cv(π

′) for each v in the set V := {∞, 2, 3, 5, . . . } of all the places of
Q. It is only a principle, rather than a conjecture, as it is not quite accurate as
stated, even after a reasonable sense being given to the term “constituent". In
what follows, we propose ourselves to make the statement of the functoriality
principle precise in the important case G′ = GLn, in which r is nothing else
than an n-dimensional representation of the algebraic group Ĝ. We will later
refer to this statement as the Arthur-Langlands conjecture.

The Langlands group of Z

Langlands has observed that the formulation of his conjectures is enlight-
ened if one assumes the existence of a certain group, that we will denote
here by5 LZ, whose representations in Ĝ parameterize the automorphic rep-
resentations of G in an appropriate sense. We may think of this group as
being an extension of the absolute Galois group of Z (... trivial according to
Minkovski!). For our needs in this preface, we will only assume that LZ is a
compact Hausdorff topological group (hence an inverse limit of compact Lie
groups) satisfying the axioms denoted (L1), (L2) and (L3) that we are going
to introduce below.

(L1) LZ is equipped, for each prime p, with a conjugacy class Frobp ⊂ LZ,
and its complex pro-Lie-algebra, with a semisimple conjugacy class Frob∞.

Let G be reductive over Z. Following Arthur and Langlands, we denote by
Ψ(G) the set of Ĝ(C)-conjugacy classes of continuous group homomorphisms

(3) ψ : LZ × SL2(C) −→ Ĝ(C)

5To be completely honest, Langlands rather considers a group which applies to all
automorphic forms, rather that to level 1 forms only, of which our LZ would merely be
a quotient [Lan79, §2]. Moreover, following Arthur in [Art89, §8], we adopt Kottwitz’s
point of view [Kot84, §12] on the Langlands group, which amounts to see it as a topological
group rather than a pro-algebraic one as Langlands does.
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which are polynomial on the SL2(C)-factor. Such a ψ is called discrete if the
centralizer Cψ of Im ψ in Ĝ(C) is finite modulo the center Z(Ĝ) of Ĝ(C).
For example, if G is GLn, in which case we also have Ĝ = GLn and ψ is
nothing else than an n-dimensional representation of LZ × SL2(C), then ψ
is discrete if, and only if, it is an irreducible representation. We denote by
Ψdisc(G) ⊂ Ψ(G) the subset of classes of discrete morphisms.

In parallel with what has been done for Π(G), Arthur and Langlands as-
sociate to each ψ in Ψ(G) a collection of conjugacy classes c(ψ) = (cv(ψ))v∈V

defined by c∞(ψ) = ψ(Frob∞, e∞) and cp(ψ) = ψ(Frobp, ep), where the ev
are respectively the elements of sl2(C) for v = ∞, and of SL2(C) for v = p,
defined by

e∞ =

[
−1

2 0
0 1

2

]
and ep =

[
p−

1
2 0

0 p
1
2

]
.

(L2) For each integer n ≥ 1, there is a unique bijection

π 7→ ψπ, Πdisc(GLn)
∼→ Ψdisc(GLn),

such that we have c(π) = c(ψπ) for all π ∈ Πdisc(GLn). Moreover, ψπ is
trivial on SL2(C) if, and only if, we have π ∈ Πcusp(GLn).

This axiom, together with the compactness of LZ, contains the generalized
Ramanujan conjecture. It also shows |Lab

Z | = dimA(GL1) = 1. We will prove
in Chapter IX that (L2) implies as well that LZ is connected.

(L3) For each G reductive over Z, there exists a decomposition

Adisc(G) =
⊥⊕

ψ∈Ψdisc(G)
Aψ(G),

stable under G(R) and H(G), and satisfying the following property: if π ∈
Π(G) appears in Aψ(G) then we have c(π) = c(ψ).

It is Arthur’s idea that the failure of Ramanujan’s conjecture may be
entirely explained in general by the presence of SL2(C) in the definition of
Ψ(G) (Formula (3)).

Arthur and Langlands strengthen the axiom (L3) by adding a converse
statement, called the multiplicity formula, whose formulation requires how-
ever the introduction of more technical ingredients. Let us simply say that
if ψ ∈ Ψdisc(G) and π ∈ Π(G) satisfy c(π) = c(ψ), this formula expresses
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the multiplicity of π in the subspace Aψ(G) as the scalar product of two
“explicit”6 characters of the finite group Cψ/Z(Ĝ).

Arthur-Langlands’ conjecture

Let us go back to the statement of the Arthur-Langlands conjecture al-
luded to above. We assume first the existence of a compact group LZ satisfy-
ing the axioms (L1), (L2) and (L3). Let G be reductive over Z, π in Πdisc(G)

and r : Ĝ→ GLn a representation. Let ψ ∈ Ψdisc(G) be such that π appears
in Aψ(G), such a ψ exists by (L3). The decomposition into irreducibles of
the representation r ◦ ψ of the direct product LZ × SL2(C) may be written
as ⊕i ri ⊗ Symdi−1C2 for some irreducible representation ri of dimension ni
of LZ, and some integers di ≥ 1. According to (L2), we have ri ' ψπi for a
unique πi in Πcusp(GLni

). In particular, for each v ∈ V we have the identity
between conjugacy classes

(4) r(cv(π)) =
⊕
i

cv(πi)⊗ Symdi−1(ev)

(the reader will have no trouble decrypting the meaning of the right-hand
side of this equality).

As a consequence, if we have π in Πdisc(G) and a representation r : Ĝ →
GLn, one conjectures the existence of a decomposition n =

∑
i nidi and of

representations πi in Πcusp(GLni
), unique up to a permutation of the indices

i, satisfying equality (4): this is the precise form of the Arthur-Langlands
conjecture that had been promised. Observe that LZ does not appear at all
in this formulation.

In his work that we already mentionned, Arthur has proved the following
special cases of this conjecture: GQ is either the symplectic group Sp2g of
a symplectic space sur Q of dimension 2g, or the special orthogonal group
of a quadratic space of dimension 2n (resp. 2n + 1) over Q possessing a
totally isotropic subspace of dimension n, π ∈ Πdisc(G) is arbitrary, and r

is the natural representation of Ĝ, called the standard representation, whose
respective dimension is 2g + 1, 2n and 2n. For such groups, Arthur also

6The definition of these characters is very delicate. One of them is a group homomor-
phism Cψ/Z(Ĝ)→ C× defined by Arthur in [Art89, p. 55] with the help of the ε-factors
of certain L-functions associated to ψ. The other one depends on the definition of a cer-
tain finite subset of irreducible unitary representations of G(R) associated to ψ, denoted
Π∞(ψ), now usually called an Arthur packet [Art89, §4]. This character is nonzero if, and
only if, π∞ belongs to Π∞(ψ). In the important special case Cψ = Z(Ĝ), the multiplicity
of π in Aψ(G) is thus nonzero if, and only if, we have π∞ ∈ Π∞(ψ).
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proves a version of the multiplicity formula to which we alluded during the
discussion of the axiom (L3). We shall state more precise forms of Arthur’s
results in chapter VIII of the memoir. Let us stress however that we shall
not say anything about Arthur’s proofs: they go far beyond the scope of this
work.

Galois representations and motives

The group LZ is subject to several other conjectures. A most tempting
one is that it satisfies the Sato-Tate property: the Frobp are equidistributed
in the set of conjugacy classes of LZ, equipped with its invariant probability
measure.7 We will rather discuss in this paragraph the conjectural relation
between LZ, Grothendieck motives and Galois representations.

These links will only concern the quotient of LZ whose irreducible rep-
resentations parameterize, in the sense of axiom (L2), the representations
π in Πcusp(GLn) which are algebraic. This adjective means here that, if we
denote by λi the eigenvalues of the conjugacy class c∞(π) ⊂ Mn(C), we
have λi − λj ∈ Z for all i, j. We then denote by w(π) the maximum of the
differences λi − λj, and call it the motivic weight of π.

Denote by Q ⊂ C the subfield of algebraic numbers. Fix a prime `, Q`

an algebraic closure of the field of `-adic numbers, and ι : Q → Q` an em-
bedding. Thanks to the works of a number of mathematicians (including
Clozel, Deligne, Fontaine, Grothendieck, Langlands, Mazur, Serre, Shimura,
Taniyama, Tate, Weil ...) one conjectures the existence of a natural bijec-
tion π 7→ ρπ,ι between the set of algebraic π in Πcusp(GLn), and the set of
isomorphism classes of irreducible continuous representations Gal(Q/Q) −→
GLn(Q`) which are unramified at each prime p 6= ` and crystalline at ` in
the sense of Fontaine, with smallest Hodge-Tate weight 0. One asks that this
bijection satisfies in particular the equality 8

det(t− ρπ,ι(Frobp)) = ι(det(t− pw(π)/2cp(π)))

for each prime p 6= `, which determines it uniquely.

This conjecture may be readily seen as an “algebraic” analogue of the ax-
iom (L2). A number of difficult and important special cases of it are known.
According to Fontaine and Mazur, one expects that the Galois representa-
tions above are exactly those appearing in the `-adic realizations of pure
motives over Q with everywhere good reduction.

7Given the connectedness of LZ, it would be easy to see that this property implies
indeed the usual Sato-Tate conjecture for modular forms for SL2(Z).

8This equality makes sense as we also conjecture that we have det(t− cp(π)) ∈ Q[t] if
π is algebraic.
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Conclusion

Let G be reductive over Z and r a representation of Ĝ. As we have seen,
the Arthur-Langlands conjecture predicts that for each π in Πdisc(G) the col-
lection of conjugacy classes r(c(π)) may be expressed in a very precise way
in terms of building blocks which are some elements πi of Πcusp(GLni

), and
some integers di, with dim r =

∑
i nidi. Here are some questions which nat-

urally arise: assume that a representation π in Πdisc(G) is given, for instance
such that πf appears concretely in a specific AU(G), can we determine the
associated representations πi and integers di? is it easier to determine them
rather than π itself ?

A first obstacle that we encounter, if one tries to illustrate these questions,
is to have at our disposal examples of groups G and of irreducible unitary
representations U of G(R) for which we know how to determine whether
AU(G) is nonzero, or better its dimension. When U is a discrete series
representation, this is an accessible but notoriously difficult problem: when
G = Sp2g it contains for instance the question of determining the dimension
of spaces of Siegel modular cuspforms for Sp2g(Z), a classical problem that
has been solved only very recently by Taïbi in genus 3 ≤ g ≤ 7. When
U is not in the discrete series, it seems hopeless to obtain a formula for
dimAU(G), as is shown by the example G = PGL2.

The special case G(R) compact, for which all the irreducible representa-
tions are in the discrete series, has the peculiar feature that the question of
determining dimAU(G) is significantly more elementary. We will give many
such examples with G = SOn. The case G = SO24 is especially interesting
from this point of view, as it is one of the groups of highest rank for which
dimAU(G) can be computed for at least one U (and with AU(G) 6= 0). In-
deed, we have dimA1(G) = |X̃24| and this cardinality is 25 as the Leech
lattice is the only one, among the 24 Niemeier lattices, not to admit any
improper isometry. We are forced to ask ourselves the following question:

Question 0. Let r be the standard representation of ŜO24 and π in Πdisc(SO24)
with π∞ = 1; can we determine the collection of representations πi and the
integers di corresponding to π and r according to Arthur-Langlands’ conjec-
ture ?9

This is the question at the origin of this work. Formulas (4) and (2) show
9Observe that Arthur’s results do not immediately apply here as SOn is not (quasi-)

split over Q. Nevertheless, we will prove that the Arthur-Langlands conjecture is satisfied
when π and r are as in the statement of Question 0, by applying Arthur’s results to Sp2g

and using some theta series arguments.
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that a positive answer to this question gives decisive informations about the
p-neighbor problem in dimension 24.

Before saying more about Question 0, let us add that the πi which appear
in its statement are not arbitrary: they are algebraic. More generally, if G is
reductive over Z and if π is in Πdisc(G) with π∞ a discrete series representa-
tion, then the eigenvalues of c∞(π) in the adjoint representation of Lie Ĝ are
in Z (Harish-Chandra); it follows that if r is an arbitrary representation of Ĝ
then the representations πi associated to π and r by the Arthur-Langlands
conjecture are necessarily algebraic. As a consequence, those π are related to
motives and Galois representations, which makes them even more interesting.
Those links are deep. We will show for instance that Arthur’s multiplicity
formula suggests that if π in Πcusp(GL8k) is algebraic, isomorphic to its dual,
and if the eigenvalues of c(π∞) are distinct, then there exists π′ in Πdisc(SO8k)
satisfying r(c(π′)) = c(π). These unexpected relations between Galois rep-
resentations and even unimodular lattices clearly show the interest to study
Πdisc(SOn) for the arithmetician.

We now go back to Question 0. An obstacle that we faced immediately, at
least when we started working on this question, is that very few results were
known about Πcusp(GLn) with n > 2, even if we restrict ourselves to algebraic
representations. 10 For instance, assuming there was a representation π in
Πdisc(SO24) satisfying π∞ = 1, and such that one of the associated πi was in
Πcusp(GLni

) with ni big, then it is very likely that we would never be able
to say anything interesting neither about this π, nor about the p-neighbor
problem in dimension 24. Observe that we always have ni ≤ 24, but also
w(πi) ≤ 24, by an inspection of c∞(π).

One of our main results will be the proof of a classification of the auto-
morphic representations π in Πcusp(GLn), with n ≥ 1 arbitrary, which are
algebraic of motivic weight w(π) ≤ 22. We will see that there are only 11
such representations, and that they all appear (as πi) in the answer to Ques-
tion 0. We have furthermore n ≤ 4 in all cases, with exactly four of them
in Πcusp(GL4). These four representations, which actually come from certain
vector valued Siegel cuspform of genus 2, will play an important role in this
memoir.

The scope of the classification above is broader: G being arbitrary, the
10The situation is very different by now, thanks to the works [CR12] and [Tai14]. Note

that although these works have been published before the present memoir, they have
actually been entirely motivated by it. A lot of important questions remain, for example
we do not know the number of algebraic π in Πcusp(GL3) with a given Archimedean
component π∞.
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Arthur-Langlands conjecture suggests that any representation π in Πdisc(G)
with π∞ is the discrete series, and such that c∞(π) is “small enough”, is built
from the 11 above automorphic representations. For example, we will see
how to use this approach to determine the dimension of the space of Siegel
modular cuspforms of weight ≤ 12 for Sp2g(Z), for any genus g ≥ 1.

It seems reasonable to end this preface here, and to leave the reader the
pleasure to immerse themselves in the actual introduction of the memoir.

*
* *

The author warmly thank Colette Moeglin, David Renard and Olivier
Taïbi for useful discussions, as well as Richard Borcherds and Thomas Mé-
garbané for their remarks.

xiii



I. Introduction

1. Even unimodular lattices

Let n ≥ 1 be an integer and consider the Euclidean space Rn equipped with
its standard inner product (xi) · (yi) =

∑
i xiyi. An even unimodular lattice

of rank n is a lattice L ⊂ Rn of covolume 1 such that x · x is an even integer
for all x in L. The set Ln of those lattices is equipped with an action of the
Euclidean orthogonal group O(Rn), and we denote by

Xn := O(Rn)\Ln

the set of isometry classes of even unimodular lattices of rank n. To each L
in Ln, one can attach a quadratic form

qL : L→ Z, x 7→ x · x
2
,

whose associated bilinear form x · y has determinant 1. The map L 7→ qL
induces a bijection between Xn and the set of isomorphism classes of positive
definite quadratic forms of rank n over Z whose determinant is 1.

As is well known, the set Xn is finite. It is not empty if and only if we
have n ≡ 0 mod 8. A standard example of an element of Ln is the lattice

En := Dn + Ze

where Dn = {(xi) ∈ Zn,
∑

i xi ≡ 0 mod 2}, e = 1
2
(1, 1, . . . , 1), and n ≡

0 mod 8. Let us explain this notation. To each element L of Ln is associated
a root system (of type ADE)

R(L) := {x ∈ L, x · x = 2},

whose rank is ≤ n. The root system R(E8) is then of type E8 and generates
over Z the lattice E8. For n > 8, R(En) is of type Dn and generates Dn.

The set Xn has only been determined so far in dimension n ≤ 24. Mordell
and Witt have respectively proved

X8 = {E8} and X16 = {E16,E8 ⊕ E8}.
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The two lattices E16 and E8 ⊕ E8 will play an important role in this mem-
oir. They are at the same time easy and hard to distinguish : their root
systems are different, but they represent each integer exactly the same num-
ber of times. This last and rather famous property leads for instance to the
isospectral tori discovered by Milnor.

The elements of X24 have been classified by Niemeier [Ni73], who proved in
particular |X24| = 24. Before saying more about those lattices, let us mention
that for n ≥ 32 the Minkowski-Siegel-Smith mass formula shows that the size
of Xn explodes. As an example, we have |X32| > 8 ·106 [Ser70]; there is even
more than a billion of elements in X32 according to King [Kin03].

An element of L24 is called a Niemeier lattice. The most famous Niemeier
lattice is the Leech lattice. Up to isometry, it is the unique element L in
L24 such that R(L) = ∅ (Conway). If L is a Niemeier lattice which is not
isomorphic to the Leech lattice, a remarkable fact is that its root system
R(L) has rank 24 and all its irreducible components share the same Coxeter
number. A simple proof of this fact has been given by Venkov [Ven80].
The miracle is then that the map L 7→ R(L) induces a bijection between
X24 − {Leech} and the set of isomorphism classes of root systems R of rank
24 whose irreducible components are of type ADE and share the same Coxeter
number h(R). The proof is a rather tedious case-by-case verification.

R D24 D16E8 3E8 A24 2D12 A17 E7 D10 2E7 A15 D9

h(R) 46 30 30 25 22 18 18 16

R 3D8 2A12 A11 D7 E6 4E6 2A9D6 4D6 3A8 2A7 2D5

h(R) 14 13 12 12 10 10 9 8

R 4A6 4A5 D4 6D4 6A4 8A3 12A2 24A1

h(R) 7 6 6 5 4 3 2

Table I.1: The 23 equi-Coxeter root systems of type ADE and rank 24

The results mentioned in this paragraph are explained in Chapter II, whose
main aim is to recall some classical results. We first develop some prereq-
uisites of bilinear and quadratic algebra. They are necessary to understand
the constructions of quadratic forms alluded above, as well as others that we
shall need throughout this memoir. In particular, we recall Venkov’s theory
and explain the construction of certain Niemeier lattices. We also take the
opportunity to recall some basic facts about the classical group schemes over
Z that we shall use in the sequel. Appendix B contains in particular a vari-
ant of the results of Chapter II: we study the even Euclidean lattices with
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determinant 2 as well as the corresponding theory of quadratic forms over Z
(in odd dimensions).

2. Kneser neighbors

Let p be a prime. The notion of p-neighbors has been introduced by M.
Kneser. It can be viewed as a tool to construct a collection of even unimod-
ular lattices from a given one and the prime p. In Chapter III, we study
several variations of this notion and give many examples.

Following Kneser, we say that two lattices L,M in Ln are p-neighbors if
L ∩ M has index p in L (hence in M). It is easy to construct all the p-
neighbors of a given even unimodular lattice L. Indeed, to each isotropic line
` in L⊗Fp, say generated by an element x in L such that qL(x) ≡ 0 mod p2,
let us associate the even unimodular lattice1

voisp(L; `) := H + Z
x

p
,

where H = {y ∈ L, x · y ≡ 0 mod p} (this lattice does not depend on the
choice of x). The map ` 7→ voisp(L; `) induces a bijection between CL(Fp) and
the set of p-neighbors of L, where CL denotes the projective (and smooth)
quadric over Z defined by qL = 0. This quadric turns out to be hyperbolic
over Fp for each prime p, thus the number of p-neighbors of L is exactly
|CL(Fp)| = 1 + p+ p2 + · · ·+ pn−2 + p

n
2
−1, a number that we shall also denote

by cn(p).

Consider for instance the element ρ = (0, 1, 2, . . . , 23) of E24. It generates
an isotropic line in E24⊗F47 because of the congruence

∑23
i=1 i

2 ≡ 0 mod 47.
It is not very difficult to check that vois47(E24; ρ) has no root; we thus have
an isometry

vois47(E24; ρ) ' Leech.

This especially simple construction of the Leech lattice is attributed to Thomp-
son in [CS99], we shall come back to it later. It illustrates the slogan claiming
that many constructions of lattices are special cases of constructions of neigh-
bors.

Going back to the general setting, we obtain for each L in Ln a partition
of the finite quadric CL(Fp) given by the isometry class of the associated
p-neighbor of L. One of the aims of this memoir is to study this partition
in dimension n ≤ 24. For instance, can we determine the number Np(L,M)

1The notation vois comes from the french word voisin for neighbor .
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of p-neighbors of L which are isometric to another given M in Ln ? The
first interesting case of this question occurs of course in dimension n = 16.
In order to formulate the result, it will be convenient to introduce the linear
map Tp : Z[Xn] → Z[Xn] defined by Tp [L] =

∑
[M ], the sum being over all

the p-neighbors M of L.

Theorem A. In the basis E8 ⊕ E8, E16 the matrix of Tp is

c16(p)

[
1 0
0 1

]
+ (1 + p+ p2 + p3)

1 + p11 − τ(p)

691

[
−405 286
405 −286

]
,

where τ is Ramanujan’s function, defined by q
∏
m≥1

(1− qm)24 =
∑

n≥1 τ(n)qn.

For instance, this statement asserts that for each prime p we have the
formula Np(E8 ⊕ E8, E16) = 405

691
(1 + p11 − τ(p))p

4−1
p−1

. Although Theorem A
was probably known to specialists, we have not found it stated this way in the
literature. Throughout this memoir, we shall give several proofs of it. Given
the theory of theta series and modular forms for SL2(Z), the presence of τ(n)
in the statement may look quite classical at first sight. For instance, if we set
rL(n) = |{x ∈ L, x·x = 2n}|, it is easy to show rLeech(p) = 65520

691
(1+p11−τ(p))

for each prime p, a formula that looks similar to the one of the theorem.
Nevertheless, the presence of the term τ(p)p

4−1
p−1

in the counting problem
above appears to be quite subtler; it will turn out to be equivalent to a non
trivial case of the Arthur-Langlands functoriality conjecture.2

Our main theorem is a statement similar to the one of Theorem A but
concerning the Niemeier lattices. It would be possible to give a formulation of
it in the same style as the one of this theorem, namely an explicit formula for a
matrix of Tp on Z[X24], although it would look very indigestible. This explicit
formula actually involves rational coefficients with such big denominators
that it appears quite remarkable from their inspection that Np(L,M) may
be an integer ! We will state a conceptual (and equivalent) version of our
result in §I.4 below (Theorem E). A remarkable feature is that all the cuspidal
modular forms of weight k ≤ 22 for the group SL2(Z), as well as 4 vector-
valued Siegel modular forms for Sp4(Z), appear in the statement. Let us
discuss from now on some consequences concerning the Niemeier lattices
that will follow in fine from an analysis of our formulas.

2Incidentally, the comparison between theorem A and the formula above for rLeech(p)

leads to the “purely quadratic” relation Np(E8 ⊕ E8,E16) = 9
1456 · rLeech(p) · p

4−1
p−1 , that

we don’t know how to prove directly.
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Consider the graph Kn(p) whose set of vertices is Xn, and with an edge
between two different classes L,M in X24 if and only if we have Np(L,M) 6= 0.
Kneser has proved that Kn(p) is connected, for all n and p, as a consequence
of his celebrated strong approximation theorem. This nice result implies that
we can theoretically reconstruct Xn from the single lattice En and a prime
p. This was actually useful to Niemeier in his computation of X24 using
2-neighbors.

The graph K16(p) is the connected graph with 2 vertices, thanks to Kneser.
This is of course compatible with the estimate |τ(p)| < 2p

11
2 (Deligne-Rama-

nujan) and with the formula for Np(E8⊕E8,E16) given by Theorem A. On the
other hand, the graph K24(2), determined by Borcherds [CS99], is not trivial
at all. It has diameter 5 and this Wikipedia page http://en.wikipedia.
org/wiki/Niemeier_lattice gives a lovely representation of it, also due to
Borcherds. Our results allow for instance to determine the graph K24(p) for
each prime p (§X.2). 3

Theorem B. (i) Let L be a Niemier lattice with roots. Then L is a p-
neighbor of the Leech lattice if and only if p ≥ h(R(L)).

(ii) The graph K24(p) is complete if and only if p ≥ 47.

Let us make some remarks about this statement. The first point concerns
the constructions of the Leech lattice as a p-neighbor of a Niemeier lattice
with roots. For instance, we observe on the Borcherds graph K24(2) that
Leech is at distance 5 from E24, and that it is only linked with the lattice
with root system 24A1 (which is the Niemeier lattice with roots whose con-
struction is the most delicate, as it uses the Golay code, §II.3). This last
property is quite simple to understand: if the Leech lattice is a 2-neighbor of
a Niemeier lattice L (with roots), then L has an index 2 subgroup without
roots. In particular, R(L) has the property that the sum of two roots is not
a root, so that its irreducible constituents must have rank 1, which forces
R(L) = 24A1. Among the root systems of table I.1, this root system is the
unique one whose Coxeter number is 2, which fits assertion (i) of Theorem B.

The most elementary part of Theorem B, proved in §III.4 and generaliz-
ing the previous observations, amounts to show the inequality p ≥ h(R(L)) if
Leech is a p-neighbor of L. This is an analog of a result of Kostant [Kos59]
asserting that the minimal order of a finite order regular element in a con-
nected, compact, adjoint Lie group, coincides with the Coxeter number of its

3A list of those graphs is available at the address http://gaetan.chenevier.perso.
math.cnrs.fr/niemeier/niemeier.html.
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root system. On the other hand, the proof of the other assertions requires
the use of Theorem E as well as a number of Ramanujan style inequalities;
it will be completed only in Chapter X (§X.2 and §X.3).

In Chapter III, we also study the limit cases of the assertion (i) of Theorem
B (the arguments are direct, i.e. they do not rely on Theorem E). For
that purpose, we proceed to a detailed analysis of the elements c of CL(Fp)
satisfying voisp(L; c) ' Leech, where L is a Niemeier lattice with non-empty
root system R = R(L). It is necessary, for the pertinence of the statements,
to study more generally the d-neighbors of L, where d ≥ 1 is a non-necessarily
prime integer (§III.1). We show that if ρ is a Weyl vector of R, and if we set
h = h(R), then we have isometries (Theorem III.4.2.10)

(2.1) voish(L; ρ) ' voish+1(L; ρ) ' Leech.

This makes sense since we have ρ ∈ L (Borcherds) and qL(ρ) = h(h + 1)
(Venkov). This statement contains for instance the aforementioned obser-
vation of Thompson. Actually, these 23 (or 46) constructions of the Leech
lattice are nothing else than the famous holy constructions due to Conway
and Sloane [CS82]. However, we give a new proof of the isometries (2.1)
using the theory of neighbors, and we show as well the identities

(2.2) Nh(L,Leech) =
|W |
ϕ(h)g

and Nh+1(L,Leech) =
|W |
h+ 1

,

where W denotes the Weyl group of R, and g2 is the index of connexion of R
in the sense of Bourbaki. We conclude Chapter III by a study of vois2(L; ρ)
inspired by results of Borcherds (see Figure III.1).

3. Theta series and Siegel modular forms

Let us come back to the determination of the operator Tp on Z[Xn]. We
start with some simple observations: the Tp commute each others and are
self-adjoint for a suitable inner product on R[Xn] [NV01] (§III.2). We have
thus to find a basis of common eigenvectors of the Tp, as well as the associated
collections of eigenvalues. There is only one obvious stable line, generated
by
∑

L∈Xn

[L]
|O(L)| , on which the operator Tp has the “trivial” eigenvalue cn(p).

As already seen in the preface, we are actually in the presence of a dis-
guised problem belonging to the spectral theory of automorphic forms. In-
deed, if G = On denotes the orthogonal group scheme over Z defined by
the quadratic form qEn , and if A denotes the adèle ring of Q, genus the-
ory leads to an isomorphism of G(R)-sets Ln = G(Q)\G(A)/G(Ẑ) (§II.2,
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§IV.1). It follows that the dual of R[Xn] is naturally isomorphic to the space
of real-valued functions on G(Q)\G(A) which are invariant under the action
of G(R)×G(Ẑ) by right translations. In this description, the operator Tp is
induced by a specific element of the ring H(G) of Hecke operators of G.

Those classical observations are recalled in Chapter IV. Although we shall
be mostly interested in the automorphic forms of the Z-group On, our state-
ments and proofs will require the introduction of several variants of them (au-
tomorphic forms for SOn, PGOn and PGSOn), modular forms for SL2(Z),
vector-valued Siegel modular forms for Sp2g(Z), and even, by the use of
Arthur’s results, some automorphic forms for PGLn. It will thus be necessary
to adopt from the beginning a sufficiently general point of view embracing all
these objects (§IV.3). The reader will find in §IV.1 and §IV.2 an elementary
exposition of Hecke operators. The emphasis is placed on the examples given
by the classical groups and their variants (Hecke, Satake, Shimura); they lead
to a deeper point of view on p-neighbors and their generalizations. In §IV.4
and §IV.5, we review some properties of automorphic forms of On and of
Siegel modular forms. Let us emphasize that the writing in this chapter is
intended for non-specialists, and pretends to little originality.

An approach to study the H(On)-module Z[Xn] is to examine the Siegel
theta series ϑg(L) of each genus g ≥ 1 of the elements L of Ln. For all
n ≡ 0 mod 8 and all g ≥ 1, they allow us to define a linear map

ϑg : C[Xn]→ Mn
2
(Sp2g(Z)), [L] 7→ ϑg(L),

where Mk(Sp2g(Z)) denotes the space of Siegel modular forms of weight k ∈ Z
for Sp2g(Z) (§V.1). The relevance of this map for our problem comes from the
(generalized) Eichler commutation relations; they assert that ϑg intertwines
each element of H(On) with a certain “explicit” element of H(Sp2g) (Eichler,
Freitag, Yoshida, Andrianov, §V.1). The map ϑg is trivially injective for
g ≥ n. It seems however quite difficult in general to determine the structure
of the H(Sp2g)-module Mk(Sp2g(Z)), especially when g grows. Nevertheless,
we will develop in Chapter IX a strategy allowing to solve some new cases of
this problem, that uses among other things recent results of Arthur [Art13].

The map ϑg has been studied by several authors. Its kernel, which de-
creases when g grows, describes the linear relations between the genus g theta
series of the elements of Ln, and the description of its image is an instance of
Eichler’s famous basis problem. More precisely, ϑg induces an injective map

(3.1) Kerϑg−1/Kerϑg −→ Sn
2
(Sp2g(Z))

where Sk(Sp2g(Z)) ⊂ Mk(Sp2g(Z)) denotes the subspace of cuspforms (see
§V.1 or the footnote below for the convention on ϑ0), and Eichler asks
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whether this map is surjective. An important result of Böcherer [Boc89]
gives a necessary and sufficient condition for an eigenform for H(Sp2g) to be
in its image, in terms of the vanishing at a certain integer of an associated
L-function (§VII.2).

The case n = 16.

The case n = 16 is the subject of a famous story, recalled in §V.2. Indeed,
a classical result of Witt and Igusa asserts that we have

(3.2) ϑg(E8 ⊕ E8) = ϑg(E16) if g ≤ 3.

These remarkable identities mean that E8⊕E8 and E16 represent each positive
integral quadratic forms of rank ≤ 3 exactly the same number of times. This
is well known in genus g = 1, as a consequence of the vanishing S8(SL2(Z)) =
0 (and leads to the aforementioned Milnor’s isospectral tori). This shows
incidentally4 that “the” non-trivial eigenvector in Z[X16] is [E16]− [E8 ⊕ E8].
The difficulty in genera 2 and 3 is that although the vanishing of S8(Sp2g(Z))
still holds, it is more complicated to prove. In Appendix A, we present a
different and ingenious proof of the identities (3.2) due to Kneser, which
does not rely on any such vanishing results.

The Siegel modular form J = ϑ4(E8 ⊕ E8) − ϑ4(E16), which is nothing
else than the famous Schottky form, is easily shown to be non-zero. Fol-
lowing Poor and Yuen [PY96], we even know that it generates S8(Sp8(Z)).
Theorem A follows then from the resolution by Ikeda [Ike01] of the Duke-
Imamoğlu conjecture [BK00]. Indeed, applied to Jacobi’s modular form ∆
in S12(SL2(Z)), Ikeda’s theorem shows the existence of a non-zero Siegel
modular form in S8(Sp8(Z)), which is an eigenform for H(Sp8), whose Hecke
eigenvalues are explicitly determined by the τ(p). Ikeda’s proof is quite dif-
ficult, and our main contribution to Theorem A in this memoir is to have
found a very different proof of Ikeda’s result in this specific case.

The important result is the following. For any map f : Ln → C, we define
a map Tp(f) : Ln → C by setting, for any L ∈ Ln, Tp(f)(L) =

∑
M f(M),

the sum being over all the p-neighbors M of L. If 1 ≤ g ≤ n/2, we denote
by Hd,g(Rn) the space of polynomials (Rn)g → C which are harmonic for the
Euclidean Laplace operator on (Rn)g, and which satisfy P ◦γ = (dét γ)d P for
all γ ∈ GLg(C) (§V.4). This space is equipped with a linear representation
of O(Rn) in a natural way.

4This assertion can be proved in a much more direct manner. Indeed, if ϑ0 denotes the
linear map C[Xn] → C sending to 1 the class of any element of Ln, the obvious equality
ϑ0 ◦ Tp = cn(p)ϑ0 shows that Kerϑ0 is stable by Tp.
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Theorem C. Let q +
∑

n≥2 anq
n be a modular form of weight k for SL2(Z)

which is an eigenform for the Hecke operators, and let d = k
2
− 2. There

exists a map f : L8 → C such that :

(i) for each prime p, we have Tp(f) = p−d p
4−1
p−1

ap f ,

(ii) f generates under O(R8) a representation isomorphic to Hd,4(R8).

The paragraph V.4 is mostly devoted to the proof of the special case
k = 12 of this theorem. It leads to a complete and rather elementary proof
of Theorem A. The general case will be addressed, and made more precise,
in §VII.2.

Let us give an idea of the proof. The first step is to realize the mod-
ular form we are starting from as a theta series

∑
x∈E8

P (x) q
x·x
2 , where

P : R8 → C is a suitable harmonic polynomial. In the case of the modular
form ∆, we check that any non-zero harmonic polynomial of degree 8 which
is invariant under the Weyl group W(E8) does the trick, and in general we in-
voke a result of Waldspurger [Wal79]. This construction defines a subspace
of functions L8 → C which are eigenvectors for the Hecke operators in H(O8),
with eigenvalues related to the ap by the Eichler commutation relations, and
which generate under O(R8) a representation isomorphic to H8,1(R8). The
main idea is to apply to them, at the source, an automorphism of order 3
of L8 arising from triality. Such an automorphism is constructed from a
structure of Coxeter octonions on the E8 lattice, and from an isomorphism
L8 ' G(Q)\G(A)/G(Ẑ) where G = PGSO8. The resulting functions satisfy
the theorem: we refer to §V.4 for the details.

Condition (ii) of the statement implies that the function f gives birth to a
Siegel theta series of genus 4 (with “pluriharmonic” coefficients). When this
series does not vanish, we observe that is a substitute for the Ikeda lift of
genus 4 of the modular form we started from. As it is not difficult to check
this non-vanishing when k = 12, Theorem A follows.

Let us mention that we shall prove later the vanishing of S8(Sp2g(Z)) for
all g 6= 4 (Theorem IX.5.10). When g = 5, 6, this had already been obtained
by Poor and Yuen [PY07], by different methods. As a consequence, the map
ϑg : C[X16]→ M8(Sp2g(Z)) is surjective for any genus g ≥ 1.
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The case n = 24

This case has been the subject of remarkable works by Erokhin [Ero79],
Borcherds-Freitag-Weissauer [BFW98] and Nebe-Venkov [NV01] (§V.3). Ero-
khin has showed the vanishing Kerϑ12 = 0, and the three authors of [BFW98]
have proved that Ker ϑ11 has dimension 1. Nebe and Venkov have studied
loc. cit. the whole filtration of Z[X24] given by the sequence of Kerϑg for
g ≥ 1. Their starting point is an explicit computation of the operator T2 on
Z[X24] that they deduce from results of Borcherds (§III.3.3). They observe
that its eigenvalues are distinct integers, which allows them to exhibit an
explicit basis of Q[X24] made of common eigenvectors for all the Tp. They
propose as well a conjecture for the dimension of the image of the map (3.1)
for each integer 1 ≤ g ≤ 12, that they prove in many cases, but not all. We
establish their conjecture and even show that Eichler’s basis problem has a
positive answer in dimension n = 24 for each genus 1 ≤ g ≤ 23 (Theorem
IX.5.2 and Corollary IX.5.7).

Theorem D. The map ϑg : C[X24] → M12(Sp2g(Z)) is surjective, and in-
duces an isomorphism Kerϑg−1/Kerϑg

∼→ S12(Sp2g(Z)), for each integer
g ≤ 23. The dimension of S12(Sp2g(Z)) for g 6= 24 is given by the table:

g 1 2 3 4 5 6 7 8 9 10 11 12 > 12

dim S12(Sp2g(Z)) 1 1 1 2 2 3 3 4 2 2 1 1 0

We will give an idea of the proof in §I.6, the most difficult point being the
first assertion. As a consequence of the theorem, we obtain a complete de-
scription of the filtration (Kerϑg)g≥1 of Z[X24]. Let us mention that Eichler’s
basis problem has a negative answer in dimension n = 32 and genus g = 14,
as we observe in Corollary VII.3.5.

4. Automorphic forms of classical groups

Siegel modular forms, as well as automorphic forms for On, can be studied
from the perspective of the recent results of Arthur [Art13]. If only to
formulate Arthur’s results, we are forced to recall the most basic features
of Langlands point of view on the theory of automorphic forms [Lan70]
[Bor77]. They are gathered in Chapter VI. The outlines of this point of
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view have already been discussed in the preface. We shall recall briefly here
some of its aspects.

Let G be a semisimple5 group scheme over Z. We denote by Πdisc(G)
the set of topologically irreducible subrepresentations of the space of square-
integrable functions on G(Q)\G(A)/G(Ẑ), for the natural actions of G(R)
and of the (commutative) ring H(G) of Hecke operators of G (§IV.3). The
Satake isomorphism asociates to each π ∈ Πdisc(G), and to each prime p,
a semisimple conjugacy class cp(π) in Ĝ(C), where Ĝ denotes the complex
semisimple algebraic group which is dual to GC in the sense of Langlands
(§VI.1, §VI.2). This enlightening point of view on the eigenvalues of Hecke
operators, due to Langlands, is made explicit in §VI.2.8 in the case of classical
groups and of the Hecke operators of interest in this memoir, following Gross’s
article [Gro98]. Similarly, we recall how the Harish-Chandra isomorphism
allows to view the infinitesimal character of the Archimedean component π∞
of π as a semisimple conjugacy class c∞(π) in the Lie algebra of Ĝ (§VI.3).

As already explained in the preface, a central and structuring conjecture,
originally due to Langlands “in the tempered case” and extended by Arthur in
general [Art89], asserts that those collections of conjugacy classes can all be
expressed in terms of the similar data relative to the elements of Πdisc(PGLm)
for all m ≥ 1. This conjecture is discussed in §VI.4.4. Let us give here an
alternative way to state it, in terms of L-functions, which is especially easy to
state. Fix π ∈ Πdisc(G) and r : Ĝ(C)→ SLn(C) an algebraic representation.
Following Langlands, the Euler product

L(s, π, r) =
∏
p

det(1− p−s r(cp(π)))−1

converges for Re s big enough. When G is the Z-group PGLm and r is the
tautological representation of Ĝ = SLm, we simply write L(s, π) = L(s, π, r).
The Arthur-Langlands conjecture for the couple (π, r) predicts the exis-
tence of an integer k ≥ 1, and for i = 1, . . . , k of a representation 6 πi
in Πcusp(PGLni

) and an integer di ≥ 1, such that the following equality holds
(§VI.4.4)

(4.1) L(s, π, r) =
k∏
i=1

di−1∏
j=0

L(s+ j − di − 1

2
, πi).

5The following discussion does not apply verbatim to certain non-connected group
schemes which are natural to consider here, such as On or PGOn. We will be more precise
in the text about the necessary modifications needed to deal with them as well, but we
shall ignore this detail in this introduction.

6As is customary, we denote by Πcusp(G) ⊂ Πdisc(G) the subset of representations
appearing in the subspace of cuspforms [GGPS66] (§IV.3).
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In a slightly abusive way, the collection of conjugacy classes r(cv(π)) will be
called the Langlands parameter of (π, r), and we shall denote it by ψ(π, r).
When the equality (4.1) holds, we shall also write it symbolically as follows7

ψ(π, r) = ⊕ki=1πi[di].

If G is a classical group over Z (§VI.4.7, §VIII.1), its dual group Ĝ is
a complex classical group (that is special orthogonal, or symplectic). In
particular, Ĝ possesses a natural or “tautological” representation, called the
standard representation, and denoted by St. An important result proved by
Arthur in [Art13] asserts that the Arthur-Langlands conjecture holds for
(π, St) for all π in Πdisc(G) if G is either Sp2g or a split special orthogonal
group over Z.

In Chapter VII, we shall illustrate these ideas by giving numerous exam-
ples of specific cases of the Arthur-Langlands conjecture stated above, con-
cerning automorphic forms for SOn or Siegel modular forms for Sp2g(Z).
They do not rely on Arthur’s results, but rather on more classical construc-
tions of theta series. We recall Rallis’ point of view on Eichler’s commu-
tation relations (§VII.1) as well as important results of Böcherer [Boc89]
and of Ikeda [Ike01]. We prove Theorem C and give other applications of
triality to the construction of certain elements in Πdisc(SO8) (§VII.2). One
ingredient of the proofs is a slight refinement of Rallis’ identities to the pair
(PGOn,PGSp2g) (§VII.1.4). In fine, our analysis covers enough construc-
tions to allow us to determine ψ(π, St) for 13 of the 16 “first” representations
π in Πdisc(SO8) (§VII.4).

We are now able to state the analog for X24 of Theorem A; we refer to
§X.1 for a formulation of the same theorem in terms of representations of
Gal(Q/Q), in the spirit of our announcement [CL11]. We shall need a few
extra notations:

– The representation ∆w, for w ∈ {11, 15, 17, 19, 21}, will denote the ele-
ment of Πcusp(PGL2) generated by the one dimensional space Sw+1(SL2(Z))
of cuspforms of weight w + 1 for the group SL2(Z).

– The representation Sym2∆w is the Gelbart-Jacquet symmetric square of
∆w [GJ78]. It is the unique element of Πcusp(PGL3) satisfying the equality
cv(Sym2∆w) = Sym2 cv(∆w) for all places v of Q.

7In the strict sense, we shall include in this equality the natural corresponding iden-
tity at the Archimedean place (§VI.4.4). Moreover, the “summand” πi[di] will be simply
denoted by [di] (resp. πi) when ni = 1 (resp. di = 1). Those conventions are in force in
Table I.2.
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– Let (w, v) be one of the 4 couples (19, 7), (21, 5), (21, 9) or (21, 13).
We will denote by ∆w,v a certain representation in Πcusp(PGL4) defined and
studied in §IX.1. The eigenvalues of its infinitesimal character c∞(∆w,v),
which is by definition a semisimple conjugacy class in M4(C), are8 ±w

2
and

±v
2
; we shall eventually show that this property characterizes ∆w,v uniquely.

Theorem E. The parameters ψ(π, St) of the 24 representations π in Πdisc(O24)
generated by the maps X24 → C which are eigenvectors for H(O24) are :

[23]⊕ [1] Sym2∆11 ⊕∆17[4]⊕∆11[2]⊕ [9]

Sym2∆11 ⊕ [21] Sym2∆11 ⊕∆15[6]⊕ [9]

∆21[2]⊕ [1]⊕ [19] ∆15[8]⊕ [1]⊕ [7]

Sym2∆11 ⊕∆19[2]⊕ [17] ∆21[2]⊕∆17[2]⊕∆11[4]⊕ [1]⊕ [7]

∆21[2]⊕∆17[2]⊕ [1]⊕ [15] ∆19[4]⊕∆11[4]⊕ [1]⊕ [7]

∆19[4]⊕ [1]⊕ [15] ∆21,9[2]⊕∆15[4]⊕ [1]⊕ [7]

Sym2∆11 ⊕∆19[2]⊕∆15[2]⊕ [13] Sym2∆11 ⊕∆19[2]⊕∆11[6]⊕ [5]

Sym2∆11 ⊕∆17[4]⊕ [13] Sym2∆11 ⊕∆19,7[2]⊕∆15[2]⊕∆11[2]⊕ [5]

∆17[6]⊕ [1]⊕ [11] ∆21[2]⊕∆11[8]⊕ [1]⊕ [3]

∆21[2]⊕∆15[4]⊕ [1]⊕ [11] ∆21,5[2]⊕∆17[2]⊕∆11[4]⊕ [1]⊕ [3]

∆21,13[2]⊕∆17[2]⊕ [1]⊕ [11] Sym2∆11 ⊕∆11[10]⊕ [1]

Sym2∆11 ⊕∆19[2]⊕∆15[2]⊕∆11[2]⊕ [9] ∆11[12]

Table I.2: The standard parameters of the π ∈ Πdisc(O24) such that π∞ = 1.

Let us stress that in a remarkable work [Ike06], Ikeda had been able to
determine 20 of the 24 parameters above, namely the ones which do not
contain any representation of the form ∆w,v.

Given the importance of the role played by those ∆w,v in this memoir,
let us say a bit more about their origin. Let (j, k) be one of the 4 couples
(6, 8), (4, 10), (8, 8) or (12, 6). A dimension formula due to R. Tsushima shows
that the space of vector-valued Siegel modular cuspforms for Sp4(Z), with
coefficients in the representation SymjC2⊗ detk of GL2(C), has dimension 1
[Tsu83]. We will give a concrete generator of this space using a construction
of theta series with “pluriharmonic” coefficients based of the E8 lattice. If πj,k

8In a similar way, the eigenvalues of c∞(∆w) are ±w2 .
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denotes the element of Πcusp(PGSp4) generated by this eigenform, then we
have the relation ψ(πj,k, St) = ∆w,v with (w, v) = (2j+k−3, j+1). Observe
that PGSp4 is isomorphic to the split classical group SO3,2 over Z, whose
dual group is Sp4 over C, so that Arthur’s theory does apply to (πj,k, St).

Theorem E will be proved in §X.4.3, using a method that we shall describe
in §I.6. Nevertheless, we will first give two conditional proofs of this result
in §X.2.10 and §X.2.11. These proofs, obtained by applying Arthur’s multi-
plicity formula, will eventually be the most natural ones, but they depend at
the moment on some refinements of Arthur’s results which are expected but
not yet available.

In Chapter VIII we thus come back to the general results of Arthur
[Art13], that we specify to the case of classical groups over Z and of their
automorphic forms which are “unramified everywhere”; such an analysis had
already been mostly carried out in [CR12, §3], that we develop and complete.
Most of Chapter VIII is devoted to make explicit the famous aforementioned
multiplicity formula. This formula gives a necessary and sufficient condi-
tion on a given collection of (πi, di)

′s to “arise” as the standard parameter of
some π in Πdisc(G) having furthermore a prescribed Archimedean component
π∞ (§VIII.3); the first part of the assertion simply means that we ask the
equality ψ(π, St) = ⊕ki=1πi[di]. We limit ourselves to the case where π∞ is
a discrete series representation of G(R) and explain in concrete terms the
way those representations are parameterized by Shelstad, which is the ingre-
dient needed to understand Arthur’s formula (§VIII.4). At the moment, the
version of the formula that we give is only proved if G is split over Z and
if all the integers di are equal to 1. Nevertheless, we discuss it in general,
and we make precise the conjectures on which various specific cases depend
(§VIII.4.21), because it greatly enlightens several constructions studied in
this memoir. In particular, we draw very concrete and explicit formulas in
the specific cases of Siegel modular forms for Sp2g(Z) and automorphic forms
for SOn (§VIII.5). We check that those formulas are compatible with the re-
sults of Chapter VII and with the results of Böcherer on the image of the
ϑ maps (3.1) (§VIII.6). As promised, we show in §IX.2 that they lead to a
rather miraculous, but simple, conditional proof of Theorem E.

5. Algebraic automorphic representations of small weight

Let n ≥ 1 be an integer. We say that a representation π in Πcusp(PGLn) is
algebraic if the eigenvalues λi of c∞(π) satisfy λi ∈ 1

2
Z and λi−λj ∈ Z for all

i, j. The largest difference between two eigenvalues of c∞(π) is then called the
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motivic weight of π; it is a nonnegative integer denoted by w(π). As already
seen in the preface9, these algebraic cuspidal automorphic representations
are interesting in their own rights: they are precisely the ones which are
related to `-adic “geometric” Galois representations according to the yoga of
Fontaine-Mazur and Langlands (§VIII.2.16). The reason we are interested in
these representations here is a little different, and explained by the following
observation.

Let G be a semisimple group scheme over Z, let π in Πdisc(G) be such
that π∞ has the same infinitesimal character as an algebraic finite dimen-
sional representation V of G(C), and let r : Ĝ(C)→ SLn(C) be an algebraic
representation. Assume that we have ψ(π, r) = ⊕ki=1πi[di] following Arthur
and Langlands. Then the representations πi are algebraic and their motivic
weight is bounded in terms of the highest weights of V and r (§VIII.2). For
instance, if G = Sp2g and if π in Πcusp(Sp2g) is generated by a Siegel modular
eigenform of weight k for Sp2g(Z) (say with k > g, but this condition can be
weakened), then we may write ψ(π, St) = ⊕ki=1πi[di] thanks to Arthur, and
each πi is algebraic of motivic weight ≤ 2k − 2. An important ingredient in
our proofs is the following classification statement, which is of independent
interest, and proved in §IX.3.

Theorem F. Let n ≥ 1 and let π in Πcusp(PGLn) be algebraic of motivic
weight ≤ 22. Then π belongs to the following list of 11 representations :

1, ∆11, ∆15, ∆17, ∆19, ∆19,7, ∆21, ∆21,5, ∆21,9, ∆21,13, Sym2∆11.

In motivic weight < 11, this theorem states that we have n = 1 and that
π is the trivial representation, a result which was already known to Mestre
and Serre (up to the language, see [Mes86, §III, Remarque 1]). In this very
specific case, it provides us (among other things!) with an “automorphic”
analog of a classical theorem of Minkowski asserting that every number field
different from Q contains at least one ramified prime (case w(π) = 0), and
also of a conjecture of Shaffarevic, independently proved by Abrashkin and
Fontaine, according to which there is no abelian variety over Z (case w(π) =
1). As far as we know, the special case w(π) = 11 of the theorem is already
new. Let us emphasize that there is no assumption on n in the statement of
Theorem F, and that it implies n ≤ 4.

Our proof of Theorem F, in the spirit of the works of Stark, Odlyzko and
Serre on lower bounds of discriminants of number fields, relies on an analogue

9The definition of algebraic given in the preface, apparently less restrictive, is actually
equivalent to the one given above: see Remark VIII.2.14. The motivic weight w(π) is also
twice the largest eigenvalue of c∞(π).
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in the framework of automorphic L-functions of the so-called explicit formulas
of Riemann and Weil in the theory of prime numbers. This analogue has been
developed by Mestre [Mes86] and applied by Fermigier to the standard L-
function L(s, π) for π in Πcusp(PGLn) to show the nonexistence of certain π’s
[Fer96]. We shall apply it more generally to the “Rankin-Selberg L-function”
of an arbitrary pair {π, π′} of cuspidal automorphic representations of PGLn
and PGLn′ (Jacquet, Piatetski-Shapiro, Shalika).

In the specific case where π′ is the dual of π, this method had already been
successfully employed by Miller [Mil02]; however our study contains some
novelties which deserve to be mentioned. First of all, we have discovered that
certain symmetric bilinear forms, which are defined on the Grothendieck ring
K∞ of the Weil group of R and real-valued, and which naturally occur in
a formulation of the explicit formulas, are positive definite on rather large
subgroups of K∞. It is this phenomenon which is responsible for the finiteness
of the list of the statement of Theorem F. Moreover, we establish some simple
but efficient criterions, for instance involving only π∞ and π′∞, that prevent
the simultaneous existence of π and π′. We refer to §IX.3 for more precise
statements.

6. Proofs of Theorems D and E

Let us sketch the main steps in the proof of Theorem E (§IX.4.3). Let
π in Πdisc(O24) be such that π∞ is the trivial representation. The results of
Erokhin and Borcherds-Freitag-Weissauer recalled in §I.3 show that π admits
a “ϑ-correspondent” π′ in Πcusp(Sp2g), generated by a Siegel modular form of
weight 12 and genus ≤ 11 for Sp2g(Z) (§VII.1), except for a single π satisfying
ψ(π, St) = ∆11[12] already determined by Ikeda. Arthur’s theorem applied
to π′, and the point of view of Rallis on Eichler’s relations, imply that (π, St)
satisfies the Arthur-Langlands conjecture. A simple combinatorial argument,
relying only on Theorem F, shows that there are at most 24 possibilities for
ψ(π, St), namely the ones given in Table I.2. On the other hand, there are
at least 24 possibilities for ψ(π, St), as the Hecke operator T2 has distinct
eigenvalues on C[X24] according to Nebe and Venkov: this concludes the
proof.

This method allows to study more generally the elements of Πcusp(Sp2g)
generated by a Siegel modular form of weight k ≤ 12 for the group Sp2g(Z)
(§IX.5). The statement of Theorem D is the result of our study in the special
case k = 12. We find exactly 23 Siegel modular forms for Sp2g(Z) which are
eigenvectors for H(Sp2g), of weight 12 and genus g ≤ 23, and we even give
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their standard parameters (Table C.1). In the case of forms of weight k ≤ 11,
we prove the following theorem, generalizing previous results of [DI98] and
[PY07] (Theorem IX.5.10).

Theorem G. Let g ≥ 1 be an integer and let k ∈ Z.

(i) If k ≤ 10 then Sk(Sp2g(Z)) vanishes, unless (k, g) is among

(8, 4), (10, 2), (10, 4), (10, 6), (10, 8),

in which case Sk(Sp2g(Z)) has dimension 1. The standard parameters of
the 5 elements of Πcusp(Sp2g) generated by thoses spaces are respectively

∆11[4]⊕[1], ∆17[2]⊕[1], ∆15[4]⊕[1], ∆17[2]⊕∆11[4]⊕[1] and ∆11[8]⊕[1].

(ii) If k = 11 then Sk(Sp2g(Z)) vanishes, except maybe if g = 6.

Let us mention some difficulties in the proofs of Theorems D and G which
do not appear in the one of Theorem E. Let π in Πcusp(Sp2g) be generated
by a Siegel modular form of weight k ≤ 12 and genus g < 12+k. Theorem F
allows to show that ψ(π, St) belongs to an explicit finite list of possibilities.
Contrary to the situation of Theorem E, some elements of this list should
actually not occur, as an inspection of the multiplicity formula shows. We by-
pass the use of this formula by relying instead on results of Böcherer [Boc89],
Ikeda [Ike01, Ike13], as well as on various theta series constructions. We
expect that S11(Sp12(Z)) vanishes but we can’t prove it unconditionally. The
cases g ≥ k are more delicate (we don’t even know the explicit form of
Arthur’s multiplicity formula in these cases); they are excluded in a rather
ad hoc manner by using the work of S. Mizumoto [Miz91] on the poles of the
L-function L(s, π, St) (§VIII.7).

7. Some applications

Thanks to Theorem E, the original problem of determining the numbers
Np(L,M) for L,M in X24 and p prime becomes equivalent to the one of de-
termining the eigenvalues of the Hecke operators in H(PGSp4) on the 4 genus
2 vector-valued Siegel modular eigenforms mentioned in §I.4. We explain in
§X.3 a method to compute those eigenvalues that we discovered, which relies
on our analysis of the p-neighbors of the Leech lattice made in §III.4.
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Let (j, k) be one of the 4 couples considered in §I.4, that is (6, 8), (4, 10),
(8, 8) or (12, 6). Let (w, v) denote the corresponding couple (2j+k−3, j+1).
If q is of the form pk where p is a prime and k an integer ≥ 1, we set

τj,k(q) := q
w
2 trace cp(∆w,v)

k.

This complex number is actually in Z.

Theorem H. Let (j, k) be one of the 4 couples (6, 8), (4, 10), (8, 8) or (12, 6).
The integers τj,k(p) with p a prime ≤ 113, and τj,k(p2) with p a prime ≤ 29,
are respectively given by the tables C.3 and C.4.

These results confirm and extend previous computations by Faber et van
der Geer [FvdG04] [vdG08, §25] for p ≤ 37 by very different methods. Our
computations allow to determine the exact value of Np(L,M) for all L,M in
X24 and all primes p ≤ 113.

Theorem F shows that the computation of τj,k(q) is perhaps not as fu-
tile as it may seem. Indeed, it suggests a parallel classification, yet to be
proved on the “`-adic side”, of the effective pure motives over Q, with good
reduction everywhere, whose motivic weight is ≤ 22. For instance, it im-
poses a remarkable conjectural constraint on the Hasse-Weil zeta function
of the Deligne-Mumford stack Mg,n classifying the stable curves of genus g
equipped with n marked points, say when g ≥ 2, n ≥ 0 and 3g− 3 +n ≤ 22:
this zeta function should be expressible in terms of the τj,k(q) and of the
coefficients of the normalized cuspforms of weight ≤ 22 for SL2(Z). This
confirms certain results (resp. conjectures) of Bergström, Faber and van der
Geer [FvdG04, Fab13, BFG14] when g = 2 (resp. g = 3).

In §X.4 we use Theorem E to prove some congruences satisfied by the
integers τj,k(p), say with p prime. They are obtained as a consequence of a
study of the eigenvectors of T2 in the natural basis of Z[X24] and by some
Galois representations arguments. Among these congruences, we prove the
following one conjectured by Harder in [Har08].

Theorem I. (Harder’s conjecture) For each prime p we have the congruence

τ4,10(p) ≡ τ22(p) + p13 + p8 mod 41,

where τ22(p) denotes the le p-th coefficient of the normalized cuspform of
weight 22 for the group SL2(Z).
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Let us go back to the proof of Theorem E sketched in §I.6. It relies on
the equality |X24| = 24, which is a consequence of Niemeier’s classification.
However, we explain in §IX.6 how a combination of the ideas above and of
Arthur’s multiplicity formula (including the conjectures 4.22 and 4.25 for-
mulated in §VIII) allows to bypass the use of this equality, and even to give
a new proof of it “without any Euclidean lattice computation”. Even bet-
ter, we not only recover the fact that there are exactly 24 isometry classes of
Niemeier lattices, but also that there is a unique such lattice with no isometry
of determinant −1.

Is it reasonnable to hope for a fine estimate of the cardinality of X32

using such a method ? The question remains open, but the example of
the dimension 24 shows that this approach, dear to the first author, is not
totally absurd. A necessary ingredient in this project is the knowledge of
the algebraic representations (say “selfdual, regular”) in Πcusp(PGLn) whose
motivic weight is ≤ 30: some progresses in this direction have recently been
obtained in [CR12] and [Tai14].

*
* *

To end this introduction, let us say a word about the use in this memoir
of the recent results of Arthur. They rely on an impressive collection of
difficult works, whose last pieces have been established only very recently
(see [Art13], [MW14, Wal14], as well as the discussion in §VIII.1). We thus
found it useful to indicate throughout the memoir by a star ∗ the statements
that depend on the results of Arthur’s book [Art13]. In this introduction,
it concerns the proofs of Theorems B, D, E, F10, G, H and I. However, let us
emphasize that contrary to our initial announcements in [CL11] and [Che13],
our final proofs neither rely on the results announced by Arthur loc. cit. in
his last chapter 9 concerning inner forms, nor on the conjectural properties
of Arthur’s packets of the type of the ones studied by Adams and Johnson.

10We actually prove a version of Theorem F which is almost as strong and which does
not rely on Arthur’s results: see Theorem IX.3.2.
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