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1. The function () is the coefficient of z* in the expansion of the
modular function

fl@) =z{Ql—a)1—2)A—2) ... = Ern)z".

1t was stated by Ramanujan* that

1.1) 7(Bn) =0 (mod 5),

1.92) (M) =7v(Mn+8) =1(MTn+5)=+(Tn+06)=0 (mod 7),
and that

(1.8 T(28n4v) =0 (mod 23),

if v is any one of the quadratic non-residues of 28, namely,
5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22.
Of these relations (1.1) is a consequencet of the result that
7(5) = 4830 =0 (mod 5),
and T(7n) = 0 (mod 7) is a consequence of
T(7) = —16744 =0 (mod 7);

and the remaining congruences have been proved by Mordeil}.

* Proc. London Math. Soc. (2), 18 (1920), Records for 13th March, 1919. Ramanujan's
Collected papers, No. 28.

t The formulae (5.1) and (5. 2) show this immediately.

1 L. J. Mordell, Proc. London Math. Soc. (2), 20 (1922), 408-416 (413). In the last two
lines of p. 413 for **2,4, 6" read **3, 5,6, The relation (1.1) was proved by H. B. C.
Darling, Proc. London Math. Soc. (2), 19 (1921), 850-372, Equation (98).
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2 J. R. WiLToN [Dec. 13,

In this note I give straightforward algebraic proofs of (1.2) and (1. 8),
and I have little doubt that the method is that by which Ramanujan
established all these congruences®*. I prove, in fact, a good deal more
than (1.2) and (1.8). In the case of the modulus 23 the results ob-
tained may be summarised in the following theorem :

Let p, q, r typify, respectively, (p) prime quadratic non-residues of
28, (q) prime quadratic residues of 23 not expressible in the form
a*+230% and (r) primes expressible in the form a’+28b%; let

n = 28" 1 p* 1L ¢* TLo™,
P q ”
Then v(n) =0 (mod 28) +f any k is odd, or if any I =2 (mod3), or if
any m = 22 (mod 28). If none of these conditions is satisfied
) = (=21 m+1) (mod 28),
where X s the number of the indices 1 which are congruent to 1 (mod 8).

The only point at which the theorem is incomplete is that there seems

to be no simple rule by means of which to distinguish between the primes

g and 7. In Table III are given the twenty-five primes » << 1000 (to-
gether with the two which lie between 3800 and 8900).

Proof of (1.2)t.
2. Let
V(@) = {1—2)(1—a)(1—2?...}°

= 1—8z+4528—Tab49210— .,

* Cf. the posthumous paper, ‘* Congruence properties of partitions’’, Math. Zeiischrift,
9 (1921), 147-153. Collected papers, No. 30.

t A Referee remarks ‘* The method employed can probably be extended to find congruence
properties among the coefficients of the terms of the various positive integral powers of a
power series (of certain types) with integral coefficients, though the number of moduli which
can be used for any given power of the series appears to be very limited.”’ In agreement with
this remark it may be observed that, if

Sti(n)at = {S(n)z"}k,
the congruences

7a(n) (mod 47), 74(n) (mod 28), Ty4(n) (mod 71), 7 (n) (mod 31),
7¢(n) (mod 47), 7;(n) (mod 167), 74(n) (mod 191), 79(n) (mod 71),
T(n) (nod 79), 7(n) (mod 239), etc., 7,(n) (mod 11), etc.,

where 7,(z) is defined by Zy(n) 2™ -! = {f(z")}4, have very remarkable properties which may
be established by the method of this paper. It is, moreover, evident that, in the case of any
power series with integral coefficients, the method will determine, among the coefficients of
the (p + 1)-th power of the series (p prime), congruence relations (mod p)—which may or may
not be interesting.
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1928.] CONGRUENCE PROPERTIES OF RAMANUJAN'S FUNCTION 7(n). 8

then, since (Y@} "=y @)=0 (modT),
we have f@) =ziy@}E =2y @ Y@ (mod 7).
But () Y& =z ﬁ b, x" 5 bpx™ = § d.z",
[¢] 0 1
where b, = (—)"@2m+1) if n = Im@m+1),

and otherwise b, = 0; and
Ay = byt b1y s+ 030415+ ... F 04 b1,
where = [(n—1)/7]. Now let
n="Tk+l (=0, n>=1);

then (i) if > 0, b,—; = O unless there are positive integers { and m such

that
TE+1—1 = Im(m+1),

z.e. @m+1)? = 56k+8l—7T=1l=n (mod 7).
Hence d, = 0 if » is a quadratic non-residue of 7.
i) If I = 0, we have b;,_; = 0 unless
Tn—1 = Im(m—+1), e @m+1) = 56n—1,

in which case
by = ()" @2m~+1)=0 (mod 7).

Hence (Tn)=d;,, =0 (mod 7).

This completes the proof of (1.2).
A simple application of the method of § 4 will show that, when p is a
prime quadratic residue of 7,

T(p)=2p (mod 7);

and equations (5.1) and (5.2) may then be employed to prove the
following theorem analogous to that stated in § 1 for modulus 28.

If p typifies prime quadratic non-residues of T, and q typifies prime
quadratic residues of 7, and if
n=TrIp"IL ¢,
r i
then T(n)=0 (mod 7) ¢f h > 0, or if any k s odd, or tf any 1 =6 (mod 7);
in all other cases
T(n) =nll((+1) (mod 7).
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4 J. R. WirtoN [Dec. 13,
Proof of (1.3).
3. Let ¢(x) = (1—x)(1—2*)(1—2? ..., then
B.1) ¢@ =1—w—2®+a'+a"—... =1+ ;j (=) {atn@r=Df ghu@uedy

=1

and, as in the case of modulus 7,

3.2 S =a{p@}* =z¢@) @®) (mod 28).
But Lp(e) pla®) = Sa, o i g?c,, ",
1} 0 1
where
(3.3) «, ={=1" if n=>5tBmtl),

and otherwise «, == 0; and
3.4 Co = UprF QUi FAa@y_is ...y Ay g,
where 2 = [(n—1)/28]. 1t follows from (3. 2) that

r(n) =ec, (mod 28).

Let n=2814+1! (A >0, 2> 1); then @,., = 0 unless, for some
positive integers I and m,

28k 4+1—1 = ImBm+1),
{.e. 36m*+12m =552k + 241—24,
i.e. (m+1P=1=n (mod 23).

Hence ¢, = 0 if n is a quadratic non-residue of 23. This completeé the
proof of (1.3).

Determination of c,.

4. When the prime p is a quadratic residue of 23, we have from (3. 3)
and (3.4)
4.1) Cp = >-:(1.57,:(31111;1)a]'—1—23fim(:&mil)] = S‘("'1)?”“‘:

summed over those values of 2 and n for which

p—1—283{3m@Bm+ 1)} = InBnt1),

(4.11) (6n+1)24-28(6m+1)* = 24p,
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1928.] CONGRUENCE PROPERTIES OF RAMANUJIAN'S PUNCTION 7(1). 5

so that the value of ¢, depends upon the character of the integers w» and
v which satisfy the Diophantine equation

(4.2 W4 280% = 24p.

Let @ denote /(—23), then in the corpus A (w) of algebraic numbers
every prime p which is a auadratic residue of 23 splits into two prime
ideal factors
i (j), 2:'—{-?434_—0))’

W 3
K
2

where » is a solution of the congruence
(4.31) @r 23 =—23 (mod 4p).

Interchanging the two values of » simply interchanges = and ='.

In K(w) there are three ideal classes®, the principal class typified by
the unit 1deal, and two classes which may be typitied by the ideal prime
factors of 2,

{4.382) Ty — (2; J_;+;}w)! 7-.,! = (27 %—%(U).
We shall also require the ideal prime factors of 3,
(4.33) 3 = (3, 3—30), =@, $+3o)

where the notation has been so chosen that m,, m; belong to the same
ideal clags, 5 ~ s
Theve are now two possibilities with respect to = and «'. (1) Both
- and =" may be principal ideals, and (i1) = and #' may be non-principal
ideals belonging to different ideal classes.
@) If = is a principal ideal

7 = (Fa+3be) (@—1b even),

and 4p = ' = a’+4-230°%,
80 that a*—0 = 4(p—609),

which shows that « and & must both be even, since if they were both odd
a*—0* would be =0 (mod 8). Hence

4.4) . p = h¥+4235,

3'p-3) -
* In the case of a prime p =7 (mod 8) the class number is = (-;)— ) =T7—4 =3, in the
r=1

case p=23. See also E. Hecke, Theorie der algebraischen Zallen (1923), 177-178.
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6 J. R. WiLToN [Dec. 13,

and since decomposition into prime ideal factors is unique there is only
one solution in positive integers of (4.4). Thus in this case

24p = (14 0)1 —w)(h+kw)(h—kw),
and (4.2) has the two solutions*
w=h+28k, v=|h—k|; u=|b—28k|, v="h+Ek
In both cases one of the two congruences
#+v =0 (mod 24), u—v=0 (mod 24)

13 satisfied ; hence, in (4.11), m and n are either both even or both odd,
and 1t follows from (4.1) that

(4.5) cp = 2.

(i) If = and 7' are non-principal ideals we may choose that solution
r of (4.81) for which

’ !
Ty~ Ty~ T, T~ w3~ T

It then follows that 3w, w3, mymg7 are principal ideals, so that 8p, 12p,
and 24p are expressible in the form %?+28v% each in one way only. The
case which is of interest here is

343 +28+« U+ vw
T Mg T = (—2 w, 1-(,;) (p, — )) = (———2 ),

where « and v satisfy (4.2). It follows that integers % and %, 2’ and %"
exist such that

8p+3pw _ htko utve VW—ko utovo

3 9 9 » PTP0="T7y 9

whence, using (4 . 2),
wu—vw) (14w = 4(h+ko),

(U—ro)(1l—w) = 6(M —k w),
from which it follows that

u—v = 4k, utv = 6%,

* Since I*—k?= p—24k*, it follows that both h + kX and h—Fk, and therefore also h—23%
and I + 23k, are prime to 6; that is to say both pairs of values of » and v are of the form
6ntly
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1928.] CONGRUENCE PROPERTIES OF RAMANUJAN'S FUNCTION 7(n). 7

so that either*

w=6n+1, v =6m—1, or wu==6n—1, v=~06m+1,
and 8n—38m+1 =9k
Thus m4n 1s odd, and from (4.1)

(4.6) \ ¢ = —1.

Proof of the theorem.

5. So far the proof has been purely algebraic. We have now to make
use of the relations

B5.1) T(mn) = T(m)rn), if m is prime to »,
(5.2 Tp) —7(p) )+ ptTn) = 0, if p is prime,

which were conjectured by Ramanujan and proved by Mordellt by means
of the theory of the modular functions.

(@) If p is a quadratic non-residue of 23,
T(p)=0 and p"=—1 (mod 28);
hence, if » is prime to p, '
(5.81) Tp?) =7m), TOp**H=0 (mod 23).
(ii) When p = 23, since ¢y = 1, it follows from (5. 1) and (5. 2) that
5 .82) T(28"n) = +(n) (mod 23).

(i) If p is a quadratic residue of 28, so that p* =1, then either
T(p) = —1 or 7(p) = 2 (mod 23).

When T(p) = —1 and = is prime to p, it follows from (5. 1) and (5. 2)
that

(5.83) TP =7Mm), TOW¥H=—Tm), TOP*¥*H =0 (mod 28).
When 7(p) =2 and n is prime to p,
(5.84) T = k~+1) (1) (mod 23).

* From (4.2) we have
ul—o? = 24(p—10?),

from which it is obvious that 2¢ and v must both be prime to 6.
t Proc. Camb. Phil. Soc., 19 (1920), 117-124.
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y J. R. WiLToN [Deec. 13,

The congruences (5.81)-(5.34), together with (4.5) and (4.6), are
equivalent to the theorem stated.

The relation (5.34) is interesting because it shows that every number
from 0 to 22 is a possible residue of () (mod 23). In particular

7B =Lk+1 (mod 23).

The three tables which follow give: I, the least value of », in each
case, for which () =% (mod 23) (k =0, 1, ..., 22); II, the primes
less than 1000 for which =(p) = —1 (mod 23); and III, the primes less
than 1000 which are expressible in the form a’+280° together with the
corresponding values of ¢ and 0. For these primes 7(p) = 2 (mod 28).

TABLE 1.
k n A n k 7 k %
0 4 6 59%.101 12 59°.101.167 16 2.59
1 1 7 2.59.101.167.173 13 2.594.101 19 11918
9 59 S 59.101.167 14 2.59%.101° 20 6962
3 3481 9 59°.101* 15 2.59.101.167 21 118
4 5959 10 59+.101 16 59.101.167.173 22 2
b} 593 11 2.59%.101.167 17 2.592.101

TABLE II.

2 3 13 29 31 41 47 71 73 127 131
139 151 163 179 193 197 233 239 257 269 277
311 331 349 353 397 400 439 443 461 487 401
499 509 541 547 577 587 601 647 553 673 683
730 761 811 823 857 859 863 887 929 947 967

TABLE IIL

P a v P? a b b2 a b

59 6 1 347 18 1 821 27 2
101 3 2 449 9 4 82y 1 6
167 12 1 463 16 3 853 5 6
173 9 2 593 15 4 8717 7 6
211 2 3 599 24 1 883 26 3
223 4 3 607 20 3 991 28 3
271 8 8 691 22 3 997 13 6
807 10 3 719 12 5 8821 | 39 10
817 15 2 809 21 | 4 3853 | 55 6
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1928.] CONGRUENCE PROPERTIES OF RAMANUJAN'S FUNCTION 7(n). 9

Other congruence relations.

6. Precisely the same method may be applied in the case of the
modulus 11.  For let

x(@) = {(1—2)1~zH(1—2z%)...}2

¥ ( _ )u x3(7r1*+ u’)‘+§m’

taken over all (positive and negative) integers such that m-n is even.

Then, as before,
f@) = zx(2) x(=) (mod 11).

But, although it is easy to compile a table of residues* of () (mod 11)
for small values of n, there does not seem to be a general formula of any
interest. The values of n < 30 for which +(2) =0 (mod 11) are 8, 19,
24, 99,

It was known to Ramanujant that

() =ne(n) (mod 5),
where () is the sum of the divisors of n; in particular, if p is prime,
7(p) =pp+1) (mod 5).
And it is easy to deduce; from a formula which he gives that

T(p)=p"+1 (mod 691).

* The computation of such a table is much facilitated by using an explicit formula for
the coefficients in the expansion of 2x(2'), given by Ramanujan, Trans. Camb. Phil. Soc.,
22 (1916), 159~184, Equation (119) (Collected papers, No. 18), and proved by Mordell, Froc.
Camb. Phil. Soc., 19 (1920), 117-124 (121). [November, 1929. In a brief note, ‘‘ Congruence
properties of Ramanujan’s function r(n) to the modulus 11'’, which will appear in Dr.
Baidafi’s Boletin Matematico early in 1930, I have given a table of residues of 7(p) (mod 11)
for prime p < 257. The only primes in the table for which r(p) = 0 are 19, 29, and 199.]

+ This is evident from a quotation made by Miss G. K. Stanley, Journal London Math.
Soc., 3 (1928), 232-237 (§ 3), from an unfinished manuscript by Ramanujan.

1 J. R. Wilton, ‘“On Ramanujan’s arithmetical function 3, ,(n)’’, Proc. Camb. Phil.
Soc., 25 (1929), 255-264. In this paper, proofs are given of the two congruences

1(n) = no(n) (mod 5),
T(n) = oy(n) (mod 691),

where ¢),(n) is the sum of the eleventh powers of the divisors of n,
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10 CONGRUENCE PROPERTIES OF RAMANUJAXN'S FUNCTION 7(n).

Thus, if p 1s a quadratic non-residue of ¥3,
r(p)=p"+1 (mod 15893).

The information given by the congruences which have been established
is quite considerable. For example¥, in the case of ~(19), we have

T7(19)=0 (mod 5), =0 (modT7), =0 (mod1l), =0 (mod 28),
T7(19)= —19 (mod 691).
Thus 7(19) = 4542615 (mod 6118805).

Ramanujan gives ~(19) = 10661420.

* I have chosen n =19 as being particularly favourable for calculation, but for every n
for which the residue of r(n) (mod 11) has been calculated, the theorems which have been
proved are sufficient to determine the residue of r(n) (mod 6118805).
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