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ON l-ADIC REPRESENTATIONS AND CONGRUENCES
FOR COEFFICIENTS OF MODULAR FORMS •

1. Introduction.

The work I shall describe in these lectures has two themes, a classical

one going back to Ramanujan (8J and a modern one initiated by Serre (9)

and Deligne [3]. To describe the classical theme, let the unique cusp

form of weight 12 for the full modular group be written

(1)

and note that the associated Dirichlet series has an Euler product

so that all the T(n) are known as soon as the T(p) are.

Write also oven) for the sum of the vth powers of the positive divisors

of n; thus in particular 0v(p) = 1 + pV. Rarnant:jan was the first to

observe that, modulo certain powers of certain small primes, there are

congruences which connect ten) with some of the oven). A good deal of

work has gone into proving such congruences; the strongest results known

to me which have been obtained by classical methods are as follows :

• Many of the results described in these lectures were first obtained

in correspondence between Serre and me during the last five years;

the disentanglement of our respective contributions is left to the

reader, as an exercise in stylistic analysis. The dedication is from

both of us.
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T(n) == a 11 (n) mod 211 if n - 1 mod 8,

T(n) - 1217 a 11 (n) mod 213 if n == 3 mod 8 ,

T(n) == 1537 a 11 (n) mod 212 if n == 5 mod 8 ,

T(n) - 705 a 11 (n) mod 214 if n - 7 mod 8,

(2)

-610 {mOd 36 if n - 1 mod
3 '}T(n) - n a 1231 (n)

37 (3)
mod if n == 2 mod 3 ;

T(n) -30 mod 53 if n is prime t~ 5; (4)- n a71 (n)

{mOd 7 if n == 0,1,2 or 4 mod 7]
T(n) - na 9(n)

72 if n ==
(5)

mod 3,5 or 6 mod 7 ;

T(p) - o mod 23 if P is a quadratic non-residue

"'of 23,

T(p) == 2 mod 23 if p = u 2 + 23v 2 for integers (6)

u ¢ 0, v,

T (p) == -1 mod 23 for other p ¢ 23;

(7)

Of these, (2) is due to Kolberg [6], (3) to Ashworth [1], (4) to Lahivi

(see [7]), (5) to Lehmer [7], (6) to Wilton [13] and (7) to Ramanuj an [8] ;

the present formulations of (3) and (4) are not those of the original au­

thors but those that appear least unnatural in the light of the multipli-

cativity of T(n) and Theorem 1 below. The proofs, whether laborious as

with (2) to (4) or elegant as with (6) and (7), do little to explain why

such congruences occur, though they shed some light on the reasons why

these particular primes occur; for example 23 = (2k - 1) where k = 12 is
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the weight of ~, and 691 divides the numerator of the Bernoulli number

The existence of such congruences raises two obvious questions. First,

are there congruences for ten) modulo primes other than 2,3,5,7,23 and

691; and second, are the congruences (2) to (7) best possible or could

one with greater labour prove congruences modulo even higher powers of

the primes cited? These questions are the subject matter of these lec­

tures. It will be shown that there are no congruences for ten) modulo

any other primes. Again, it will be shown that in a we,ll-defined sense

the last three congruences (2) are best possible; but it will also be

shown how they can be improved by making use of additional information

about n. Similar arguments can probably be applied to the other congru­

ences (3) to (7), some of which are certainly not best possible.

To attack these questions we need some limitation on the types of con-

gruence that can occur; and this is provided by our second theme. In

1968 Serre [9] put forward a conjecture relating I-adic representations

and coefficients of modular forms; and he showed that the existence of

congruences such as (2) to (7) fitted well with the conjecture. Serre's

conjecture was proved by Deligne; see [3] and also the lecture of Lang-

lands at this conference. We state here only a special case, which will

be sufficient for our purpose; there is no reason to suppose that a si-

milar study of more general modular forms will yield any essentially new

phenomena.

The following notation will be used throughout these lectures. Let I be

a prime number; denote by KI the maximal algebraic extension of ~ rami­

fied only at I, and by K~b the maximal subfield of KI abelian over ~.

For any prime p ~ I denote by Frob(p) the conjugacy class of Frobenius

elements of p in Gal(KIIQ); by abuse of language we shall sometimes speak
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of Frob(p) as if it were simply an element of the Galois group. By class­

field theory there is a canonical isomorphism Gal(K1b/~) ~~; , the group

of l-adic units; and this induces a canonical character

with the property that

xI(Frob(p» = p for all p * i.

THEOREM 1. (Serre-Deligne). Let f = ranqn be a cusp form of weight k

for the full modular group, and suppose that a 1 = 1, that every an is in

Zl , and that the associated Dirichlet series has an Euler product

(8)

Then there is a continuous homomorphism

depending on f, such that Pl(Frob(p» has characteristic polynomial

for each p ::1= l.

The conditions on f are certainly satisfied by the unique cusp forms of

weights 12,16,18,20,22 and 26, though very possibly by no other form;

of these, ~ is the most glamorous though in the end the form of weight 16

will prove even more interesting. Note that the Theorem in particular im-

plies

k-1det 0 Pl = xl (9)

Now if the image of Pi is small enough, a knowledge of the determinant of

an element of the image will imply some l-adic information about the trace

of that element; and so in particular a knowledge of p (or even an appro-
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ximate I-adic knowledge of p) will imply some t-adic information about

ape This is just the meaning of the congruences (2) to (7), with cer­

tain reservations in the case of (6) and with their arguments restric­

ted to primes. Conversely the existence of such congruences implies a

restriction on the image of Pt' since the set of Frobenius elements is

dense in the full Galois group and therefore any congruence relation be­

tween a and pk-1 is also a valid congruence relation between the trace
p

and determinant of every element of the image of Pt.

In what follows we shall use a tilde consistently to denote reduction

mod t; thus for example ;t is the induced map

By (9) the image of det 0 PI is just the (k-1)th powers in~~; so to find

the image of Pt a major step will be to find its intersection with SL2(Zt).

In particular, if this intersection is the whole of SL2(Zl) then the im­

age of Pi will be the entire inverse image of (Z~)k-1 in GL 2QZt). In

view of the following lemma, it is enough to look at the image of Pt.

LEMMA 1. Suppose that t > 3 and that G is a subgroup of GL 2(Zt) which is

closed in the l-adic -topology. If the image of G under reduction mod t

contains SL2 (Ft ' ~ G contains SL2(Zt).

PROOF. For each n > 0, denote by Gn the image of G in GL2(Zllnz). Since

G is closed, to prove the lemma it is enough to prove that Gn ~ SL 2(Zltnz)

for each n > o. This holds by hypothesis for n = 1, and it will follow

by induction on n once we have proved for each n > 1 that G contains then
kernel of
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Call this kernel Hn • We start with the case n = 2; now H2 is genera-
_ 0 1 0 0 1 -1

ted by the three matrices I + lu, where u - (0 0)'(1 0) or (1 -1)' so

it is enough to prove that G2 contains the images of these three matri­

ces. In each case u 2 = 0 and I + u is in SL2(Z), whence there is an

element a in G such that a =I + u mod l, that is

a = I + u + lv

for some matrix v with elements in Zl. Now

a l = I + leu + lv) +••• + (u + lv)l - I + lu mod l2

since all the other terms which occur when the powers of (u + lv) are

written out in full either contain a factor l2 or a factor u 2 which va-

nishes. (For l = 3 the argument breaks down at this point, because of

the presence of a term 3 u v u .) This proves that G2 :::> H2• To prove that

Gn ::> Hn for n > 2 we use induction on n, so we assume that Gn-l ::> Hn-l·
Let I n-l where v nas elements in ill' be a representative of+ l v, an as-

signed element of Hn • The image of I + In-2v mod In-l is in Hn- 1 and

therefore in Gn- 1 ; so there is an element a of G such that

mod In-l.

By an argument similar to the one above, it follows that

which proves that Gn ::> Hn • This completes the proof of the lemma.

There are analogous results for l = 2 and l = 3, in which Fl is replaced

by71/(S) or il/(9) respectively; and the examples given by Serre ([10],

p. IV - 28) show that the condition l > 3 in the lemma cannot be dropped

without some modification. The proofs of these analogous results are es-

sentially contained in the proof of the lemma.
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Indeed for l = 3 we now have G2 ~ H2 by hypothesis, and the inductive

proof that Gn ~ Hn for each n > 2 works as before; for l = 2 we have

G2 ~ H2 and G3 ~ H3 by hypothesis, and the induction works provided n > 3.

In the application of lemma 1 G will be the imag~ of Pt and will certain­

ly be closed since Galois groups are compact. It will be convenient to

say that l is an exceptional prime for the cusp form f if the image of Pl

does nOL contain SL 2(Zl); with this definition lemma 1 can be rewritten

as follows.

COROLLARY. Suppose that l > 3; then l is exceptional for f if and only if

the image of Pl does not contain SL2(Ft ). For l = 2 or 3 this is still

a sufficient condition for l to be exceptional for f.

We need not be more precise for t = 2 or 3, since for each of the six cusp

forms which we shall particularly consider, the sufficient condition is

then satisfied. Indeed Serre has conjectured that for l < 11 there is no

continuous homomorphism Gal(Kt/~) ~ GL 2(F t ) whose determinant is an odd

power of Xl and whose image contains SL2(~t). He further conjectures that

for any l such a homomorphism is always connected in an obvious sense with

a modular form mod l which is an eigenfunction of all Tp with p * t.

It is now advantageous to replace our original search for congruences for

ap by the apparently more general search for primes exceptional for f.

In this search the first step will be to classify those subgroups of

GL 2 (IFl) which do not contain SL 2 (Fl ). It turns out that each such sub-

group is small enough for there to be a non-trivial algebraic relation

which is satisfied by the trace and determinant of any of its elements.

Hence we obtain a finite list of possible types of congruence relation

mod l between p and ap ; and for each exceptional prime lone of these
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congruence relations must hold. To test the validity of the possible re­

lations, we develop a structure theorem for the ring of modular forms

mod l; this gives us (with one exception) a decision process for the pos­

sible relations and thence (up to finitely many undecided cases) a list

of the exceptional primes for any f. All this occupies §§2-4.

For congruences modulo higher powers of l the position is less satisfac-

tory, primarily because at present we lack a structure theorem for modu­

lar forms mod tV. We confine ourselves in §S and the Appendix to two

particular topics which illustrate again the benefits that come from com­

bining the congruence and the representation-theory- approaches. It is

shown in §4 that the congruences (6) are equivalent to the fact that the

image of P23 is isomorphic to S3' the symmetric group on three elements.

In §S we deduce from this last statement that the second congruence (6)

can be improved to T(p) =1 + pll mod 23 2 • Again, the congruences (2)

turn out to be sufficient to determine the image of P2' a result whose

proof has been put in the appendix because of the heavy algebra involved;

and a number of further results flow from this.

Much of the material of these lectures can be found, more succ~nctly pre-

sented, in a recent Bourbaki seminar of Serre [11] •

2. The possible images of Pt.

In this section we classify the subgroups of GL 2(Ft ) and determine which

of them are candidates to be the image of Pt; and to each such candi­

date which does not contain SL2 (Ft ) we determine at least some of the as­

sociated congruence relations mod t between p and ape All the group

theory involved is at least fifty years old, except for the terminology;

but I know of no convenient and easily accessible account of it.
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We first define certain standard types of subgroup of GL 2 (Fl ), which

for this purpose will be considered as acting on V, a vector space of

dimension 2 over ~l. A Borel subgroup is any subgroup conjugate to the

group of non-singular upper triangular matrices; thus there is a one-

one correspondence between the Borel subgroups and the one-dimensional

subspaces W of V, the subgroup corresponding to W consisting of those

transformations which have W as an eigenspace.

A Cartan subgroup is a maximal semi-simple commutative subgroup; there

are two kinds of Cartan subgroups, the split and the non-split. (When

l = 2, the group which fits the construction of a split Cartan subgroup

consists only of the identity and is therefore not maximal; it turns out

most convenient to say that split Cartan subgroups only happen for

l > 2.) A split Cartan subgroup is any subgroup conjugate to the group

of non-singular diagonal matrices; thus there is a one-one correspondence

between split Cartan subgroups and unordered pairs of distinct one-dimen-

sional subspaces W1 and W2 of V, the subgroup corresponding to W1 and W2
consisting of those transformations which have W1 and W2 as eigenspaces.

A split Cartan subgroup is the direct product of two cyclic groups of or-

der (! - 1).

To define a non-split Cartan subgroup requires more notation. Let V(2)

be the vector space obtained from V by quadratic extension of the under­

lying field F t ; let W' be anyone-dimensional subspace of V(Z) which is

not induced by a subspace of V, and let W" be the conjugate of W' over

Fie The non-split Cartan subgroup corresponding to W' or W" consists of

those elements of GL 2(Fl ) which have W' and W" as eigenspacese An ele­

ment of the subgroup is uniquely determined by its eigenvalue with res­

pect to W'; so a non-split Cartan subgroup is isomorphic to the multipli­

cative gro~p of the field of £2 elements, and is therefore cyclic of or­

der (l2 - 1).
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An element of the normalizer of a Cartan subgroup (of either kind) must

either fix or interchange the two eigenspaces associated with the Cartan

subgroup; if it fixes them, it already lies in the Cartan subgroup. It

follows that any ~artan subgroup is of index two in its own normalizer.

LEMMA 2. Let G be a subgroup of GL 2(Ft ). If the order of G is divisible

~ t, then either G is contained in a Borel subgroup of GL 2(Ft ) ££ G~

tains SL 2(Ft ). If the order of G is prime to t, let H be the image of

G in PGL 2(F l ); then

(i) H is cyclic and G is contained in a Cartan subgroup, ££

(ii) H is dihedral and G is contained in the normalizer of a Cartan sub-

group but not in the Cartan subgroup itself, ££

(iii) H is isomorphic to A4 , 8 4 2£ AS' where S denotes the symmetric and

and A the alternating group.

In case (ii) t must be odd; in case (iii) l must be prime to 6,6 or 30

respectively.

PROOF. Suppose first. that the order of G is divisible by l, and choose °
in G of order exactly l; then there is a unique one-dimensional subspace

Wof V which is an eigenspace of o. If every element of G has Was an

eigenspace, then G is contained in the Borel subgroup associated with W.

If not, let-0 1 be an element of G which maps W to some other one-dimen­

sional space W'; then 01oo~1 is an element of G of order exactly l with

W' as its only eigenspace. Take Wand W' as coordinate axes in V; then

for some non-zero b,c we have

o =

But it is easy to see that these two matrices generate SL2(Ft ), which

must therefore be contained in G; this proves the lemma in this case.

Henceforth we can assume that the order of H is prime to t. The analo-
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gous result for finite subgroups of GL2 (C) is well known; all we have

to do is choose a not too geometric proof of that result and mimic it.

As is only proper, we follow Klein [5]. Since the order of H is prime

to l, every element of H is semi-simple and every element other than the

identity has just two eigenvectors over the algebraic closure of Fl.

Note first that if two elements of H have one eigenvector in common they

have both eigenvectors in common. For if not, suppose that 01 and 02

have just one eigenvector in. common; then by a change of axes we can

write them in the form

where every letter is non-zero. The commutator

a~la;lala2 =(~ a-
1
e<i-a -

1d
:)

is not the identity because a ; d; so it is an element of H which has or-

der l, contrary to hypothesis.

The set of eigenvectors of non-trivial elements of H is finite and inva­

riant under H; let t 1 , .•. ,t v be representatives of the orbits under Hand

for each t · let ~i > 1 be the number of elements of H which fix t· · If
~ ~

h is the order of H then the orbit of t· contains h/~i elements; so by
1

counting the number of pairs (non-trivial element of H and an eigenvector

of it) in two different ways we obtain the identity

which can be rewritten as

An easy calculation shows that the solutions of this,with each ~i di­

viding h, fall into the following five classes:
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(i) v = 2 , 111 = 112 = h.

(ii) v = a, h even, 111 = 112 = z, 1J 3 ~h.

(iii) v = 3, h = 12, lJ1 = 2 , 112 = lla = 3.

(iv) v = 3, h = 24, 111 = 2, lJ2 = 3, 113 = 4.

(v) v = a, h = 60, 111 = 2, 112 = 3, lJ a = 5.

It only remains to identify the corresponding groups.

For (i), all elements of H have the same eigenvectors, so they must form

a cyclic group; and all elements of G have the same eigenvectors, so

they lie in the associated Cartan subgroup. For (ii), assume for conve­

nience h > 4. Then the orbit of ;a consists of two elements, each fixed

by half the members of H; so H has a cyclic subgroup Ho of index 2,

which must be normal in H. The inverse image of Ho in G must be in a

Cartan subgroup of GL 2 , and the remaining elements of G interchange the

two eigenspaces associated with this Cartan subgroup; so G lies in the

normalizer of a Cartan subgroup but not in the Cartan subgroup itself.

A similar argument works when h = 4.

In the remaining cases we need only identify H with A4 , S4 or AS respec­

tively. For (iii), the orbit of t a has four elements and these are per­

muted by H. The induced representation of H is faithful because no non­

trivial element of H has more than two eigenvectors; so H is isomorphic

to a subgroup of S4 of order 12, which must be A4 . Similarly in (iv) the

orbit of ;2 contains eight vectors; but these are the only vectors which

are eigenvectors of elements of H of order a, so they can naturally be

regarded as four pairs. If there were a non-trivial element of H which

fixed each of these pairs, it would be of order 2 and would therefore

have to interchange the elements of each pair. This property would define

it uniquely, so it would be in the centre of Hand H would have elements

of order 6, which it does not. So the homomorphism of H into the permu­

tation group of these four pairs has trivial kernel and thus H is isomor­

phic to 54-
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In case (v) a direct representation of H as a group of permutations of

five elements involves some rather artificial manoeuvres and it is bet-

ter to proceed as follows. Since every ~i is prime, every element of H

has prime order; and since any two eigenvectors associated with elements

of the same order are equivalent under H, any two cyclic subgroups of the

same order are conjugate. So any normal subgroup of H contains all or

none of the elements of any given order. But H has 15 elements of order

2, 20 elements of order 3, and 24 elements of order 5; so H can have no

non-trivial normal subgroup. Since the only simple group of order SO is

AS' H must be isomorphic to AS. This completes the proof of the lemma.

COROLLARY 1. Let Pt be any continuous homorphism Gal(Kt/~) ~ GL 2(Zt)
k-1such that det 0 Pt = Xt for some even integer k. Let G C GL 2 (Ft ) be

the image of Pt and let H be the image of G in PGL 2(Ft ). Suppose that

G does not contain SL2(Ft ). Then

(i) G is contained in a Borel subgroup of GL 2(Ft ); 2£

(ii) G is contained in the normalizerof a Cartan subgroup, but not in

the Cartan subgroup itself; or

(iii) H is isomorphic to S4~

PROOF. Any subgroup of a split Cartan subgroup is contained in a Borel

subgroup - for example the one corresponding to one of the two eigenspa­

ces of the .Oartan subgroup. So we have only to show that the cases of G

contained in a non-split Cartan subgroup, or of H isomorphic to A4 or AS'

can be neglected. For the first of these, let C be a non-split Cartan

subgroup, so that C is cyclic of order <t 2 - 1); then the homomorphism

must factor through Gal(K~b/fJ.) • C is commutative. Since the-- tlt because

image • has order prime to t, its divide (t - 1) ;of 'llt order must so the

image lies in the set of matrices aI with a ~ 0, and thus is in a Borel

subgroup. An alternative argument is to consider an element (J of
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Gal(Kl/~) which corresponds to complex conjugation under some complex em­

bedding of Kt . Now 0 2 = 1 and Xl(o) = -1; so Pl(o) has eigenvalues 1 and

-1, and therefore cannot be in a non-split Cartan subgroup. However this

argument breaks down when l = 2.

In proving that H cannot be A4 or AS' we can assume that l > 2. Consider

the commutative diagram :

det ..
Gal(Kl/~) -+ G -+ lF1

1 1
H -+ IF l .. IFl .. 2 ,.", {± 1 }

By hypothesis the image of Gin F; consists of all ek - l)th powers and

k is even; so the lower line is onto, which means that H must have a sub-

group of index 2. Neither A 4 nor AS has such a subgroup.

COROLLARY 2. Let f = Ianqn be a cusp form of weight k for the full modu­

lar group, such that a 1 = 1, every an is in~, and the associated Dirich­

let series has an Euler product; and let

be the continuous homomorphism given by Theorem 1. Suppose that the .image

2f ;t does not contain SL 2(Ft ), so that l is an exceptional prime for f.

Then the three cases listed in Corollary 1 imply respectively the follo­

wins congruences for the coefficients of f

Ci) There is an integer m such that an - nm 0k-1-2m(n) mod l for all n

prime to l.

(ii) an ~ 0 mod t whenever n is. a quadratic non-residue mod l.

(J..~J..) 1-k 2 ~ 0 2 d l f 11' + 04 P ap ~1, or 4 mo or a prJ.mes p r ~.

PROOF. In case (i) we may without loss of generality suppose that the Bo-
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reI subgroup involved consists of the upper triangular matrices; thus

for any a in Gal(Kl/~) we can write

Plea) - (a(a) sea»)
- 0 o(a) •

Now a thus defined is a continuous homomorphism Gal(Kl/~) ~ F~, and must

- m - k-ltherefore be equal to Xt for some integer m. Moreover ao = Xt by

Theorem 1, so that 0 = Xtk - 1- m Taking a = Frob(p) we obtain

(10)

for p ~ l, and the congruence for an follows from this and (8).

For case (ii), note first that we can assume t > 2; for every proper sub-

group of GL 2 (F 2) is contained in either a Cartan or a Borel subgroup.

Let C be the Cartan subgroup and N its normalizer, and consider the homo­

morphism

By hypothesis this is onto; and since the image is commutative the homo­

morphism factors through Gal(K~b/~) -~~. The onl:: continuous homomor­

phism of this last group onto {±1} is the one whose kernel is the squares;

and it follows that pt(FrOb(p» is in C if and only if p is a quadratic

residue mod t. Now let a be an element of N not in C; after a field ex-

tension if necessary, a interchanges two one-dimensional subspaces of the

space on which it operates, and can therefore be put in the form (~ ~).

So a has zero trace. Hence ap = 0 mod t whenever p is a quadratic non-re­

sidue mod i, by Theorem 1; and the same conclusion follows for an by (8).

For (iii), note that every element of H has order 1,2,3 or 4; so every

element of G has characteristic roots of the form A~,A~-l where one of
246 8

~ '~ '~ or ~ is equal to 1. Enumeration of cases now proves the Corol-

lary.
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We may distinguish (iii) from (ii) as follows. By an argument similar

to that used for case (ii), the image of Frob(p) in H lies in A4 if and

only if p is a quadratic residue mod l. Since Frobenius elements are

dense in any Galois group, there are an infinity of p such that the image

of Frob(p) in H has order 4; such p are quadratic non-residues mod l

and satisfy

l-k 2P a p -

3. Modular forms mod l.

For any integer v > a we write

2 mod l.

2v-l n
= ~~(1 - 2v) + L n g

1 1 _ qn

where b 2v is the (2v)th Bernoulli number; and

For v > 1 these are different normalizations of the Eisenstein series of

weight 2v. This G2 is essentially the n2 of the classical theory; it is

not a modular form but satisfies a similar functional equation. Follow­

ing Ramanujan [8] we write

Any modular form of weight k can be expressed as an isobaric polynomial

in Q and R (which have weights 4 and 6 respectively). More specifically,

1728~ (11)
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and if f is a modular' form and A the additive group generated by the

coefficients of the q-series expansion of f, then f has a unique ex-

pression as an isobaric element of A[Q,~] ~ RA[Q,6]. To find an expli-

cit expression for f we have in general to compare q-series expansions;

but for Eisenstein series we can use the recurrence relation

valid for any even n greater than 2, in which we have simplified the al-

gebra by writing

This may be proved by substituting the standard expansion

= z-2 + 2L (_l)m (~n2)2m z2m-2 F2m
m=2

for the Weierstrass r-function into the differential equation

The first few cases give

values up to E32 inclusive will be found in Ramanujan [8] , Table I.

Henceforth, following Ramanujan, we write

de = q dq

the essential property of this operator in the present context is as fol-

lows.

LEMMA 3. Let f be a modular form of weight k; then (12ef - kPf) is a

modular form of weight (k + 2).
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The proof of lemma 3 is by direct calculation of the effect of modular

transformations on (12ef - kPf); it can be found in Ogg's lectures at

this conference. A similar calculation shows that (12ep - p 2) is a

modular form of weight 4. Examination of the constant terms in the q-

series expansions now gives

3eQ - PQ = -R, 2eR - PR = _Q2,
(14)

12ep - p 2 = -Q, e6 - P6 = 0

We can reformulate lemma 3 .in terms of the operator a defined by

a = 12 e - kP on modular forms of weight k. (15)

COROLLARY. a is the derivation on the graded algebra of modular forms

such that aQ = -4R and aR = _6Q 2.

We can now define modular forms mod i. ~~note by ~ the local ring of ~

at i-that is, the ring of rational numbers with denominator prime to

i. Let Mk be the tf -module of those modular forms of weight k whose q­

series expansions have all their coefficients in~; and let Mk C Fl [[q]]
'" n nbe the FD-vector space whose elements consist of the La q as f = Ia q

-t... n • n
runs through the elements of Mk . (Here, as always, the tilde denotes re-

duction mod ~.) Then the Fl-algebra of modular forms mod l is just the

sum of the Mk . We have now to determine the structure of this algebra,

which we shall write M; and since the argument involves certain Eisen-

stein series we shall need some standard results on the l-adic nature of

Bernouilli numbers.

LEMMA 4. (von Staudt-Kummer).

(i) If (l - 1)12v then lb == -1 mod i.2v
(ii) If (l 1)\2v then b 2v /2v is i-integral and its residue class mod l

only depends on 2v model -1).



21
SwD-21

For a proof see [2] , pp.384-6.

It is convenient to adopt the following notations, even though they in­

volve a slight abuse of language. Let f be a function which has a q-se­

ries expansion La qn such that every a is intY; then f will denote then n
- nformal power series Lanq. Again, let ~(X,Y) be a polynomial in ~X,Yl;

then ;(X,Y) will denote the polynomial in Ft[X,Y] obtained from ~ by re­

duction of the coefficients mod t. However, the natural arguments for

~ will be Q and R; and since Q and R are algebraically independent even

over ~ we shall allow ourselves to regard them as independent transcen­

dentals and therefore as acceptable formal arguments for~. Thus ~(Q,R)

is a polynomial in two variables with coefficients in F t , whereas ~(Q,R)

is the element of Ft[[q]] obtained from this polynomial by substitu~ion.

In particular if f is in Mk then there is a unique polynomial ~ such that

~(Q,R) = f; for l > 3 the coefficients of ~ are in ~ and ~(Q,R) = f.
Note that the derivation a on ~[Q,R] induces a derivation, also written

0, on Ft[Q,R], and that e analogously extends to Ft[[q]l.

From now until the end of the proof of lemma 5, we assume that l > 3.

The cases l = 2 and l = 3 are anomalous because an element of Mk cannot

necessarily be written as an isobaric polynomial of~[Q,R]; see (11).

Fortunately they are also trivial, and the analogues of Theorem 2 for

them will be stated and proved as Theorem 3. For l > 3 there is a ring

homomorphism

which extends a ~ F l and is onto; to determine the structure of M we have

only to find the kernel of the right hand arrow. Denote by A and B the

two isobaric polynomials such that



22
SwD-22

By lemma 4(i), El - 1 is in Ml - 1: and since by lemma 4(ii)

(16)

El +1 is in Ml +1 . So A and B have coefficients in or.

THEOREM 2, Suppose that l > 3, Then

(i) A(Q,R) = 1 and B(Q,P) = P;

(ii) 3A(Q,R) = B(Q,R) and 3B(Q,R) = - QA(Q,R);

(iii) A(Q,R) has no repeated factor and is prime to B(Q,R);

(iv) Mis naturally isomorphic to F t [Q,Rl!(A-1) and has a natural grading

with values .in ~!(l-l),

PROOF, The first part of (i) follows from lemma 4(ii). Moreover

d - dl mod t

for any integer d, whence 0l(n) =olen); and the second part of (i) now

follows from (16), Thus 8A(Q,R) = 0 whence

This means that 3A-B has a q-series every coefficient of which is divisi-

ble by t; since it is a modular form of weight l+l, it must lie in l~Q,R]

and thus aX = a. Again

aB(Q,R) = (126 - P)B(Q,R) = (126 - P)P = -Q

by (14), and a similar argument shows that aB = -QA. This proves (ii),

Now suppose that A is exactly divisible by (Q3 - ~R2)n where n > 0 and

~ t 0 is in the algebraic closure of F t , Since A(Q,R) has non-zero con­
-3 -2stant term whereas Q - R has zero constant term, we cannot have c = 1;

so
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is prime to (Q3 ~R2). Moreover by consideration of degree n < t. It

follows from aA = B that B is exactly divisible by (Q3 - ~R2)n-l; and if

n > 1 it follows from aB - -= -QA that A is exactly divisible by

(Q3 _ ;R 2)n-2, contrary to hypothesis. A similar .argument works for po­

wers of Q or R. Thus A has no repeated factors and its simple factors do

not divide B. This proves (iii).

Denote by a the kernel of the map F't1Q,R] ~Ft((q]) obtained by substitu­

ting Qand R for Q and R; clearly a contains A - 1, and a is prime be-

- -cause the image is an integral domain. If a were maximal then Q and R

would be algebraic over Ft , which is absurd because the coefficient of q

in at least one of them is non-zero. Since ~t[Q,R] has dimension 2, in

order to prove that a = (A - 1) it is now enough to prove that A - 1 is

an irreducible polynomial. If not, let

~(Q,R) = ~n(Q,R) + ~n-l(Q,R) + ••• + 1

be an irreducible proper factor of A - 1, where ~v is isobaric of weight

d 1 b . .. (0 1)th f·· r h··v, an et c e a pr~m~t~ve ~ - root 0 un~ty ~n ~t; t en wr~t~ng

~2Q, ~3R for Q,R does not alter A - 1, so that ~(~2Q,~3R) is also a fac-

tor of A - 1. But this is not equal to ~(Q,R) and hence is coprime to it;

-2 -3 divides A- 1. By considering of highest weightso ~(Q,R)~(c Q,c R) terms

we see that (~n(Q,R»2 divides A, which is absurd because Ahas no repea-

ted factors. This completes the proof of Theorem 2.

Note that a is an operator of weight 2 on M; and the same is true of e

since P is a modular form mod t of weight 2. It is this last property

which makes the theory of modular forms mod t so much tidier than the clas-

sical theory.

It follows from Theorem 2 that A(Q,R) is the Hasse invariant of the asso-

ciated elliptic curve. This may be proved in one of two ways. On the one

hand Deligne has shown that the q-series expansion of the Hasse invariant
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reduces to 1; and Theorem 2 shows that this property characterizes A

among polynomials of weight l - 1. On the other hand the differential

equation derived from (ii) is just that which the Hasse invariant is

known to satisfy - see Igusa (4). Indeed the present proof of (iii) is

essentially the same as Igusa's proof that the Hasse invariant has no

repeated roots. One may also derive explicit formulae for A and Bfrom

(ii), as an alternative to the use of the recursion formula (12). We

list the first few cases below

l = 5.

l = 7.

Now E4 = Q;

Now E6 = R;

l = 11. Now E10 = QR, so that QR = 1; thus M is isomorphic to

l = 13. Now E12 is given by (13) and the fundamental relation is

For use in the next section we introduce a filtration on M. Let 1 be a

graded element of M, that is to say a sum of elements of various Mk for

which all the relevant k are congruent model - 1). By multiplying the

summands by suitable powers of A we can make them all belong to the same

Mk , so that f itself belongs to an Mk . Define w(f), the filtration of 1,

to be the least k such that f belongs to Mk . Thus for example only the

constants have filtration 0 and there are no elements of filtration 2;

there are elements of filt~ation 4 if and only if l > 5, and in that case

they are just the non-zero multiples of Q.

LEMMA 5. (i) Let f be a modular form of weight k such that f = ~(Q,R)

for some ~ in ~[Q,R), and suppose that f +O. Then w(f) < k if and only

if Adivides ~.
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(ii) Let f be a graded element of M; then w(6f) ~ w(f) + l + 1, (17)

with equality if and only if wet) 1 0 mod l.

PROOF. (i) is obvious from Theorem 2(iv) since we are still assuming

l > 3. To prove (ii), let k = w(f) and let f = ~(Q,R) be a modular form

of weight k whose reduction mod l is f. The inequality (17) follows from

so that 120f is the image in Mof (Aa~ + kB~). Moreover we know by (i)

that ~ is not a multiple of A(except in the trivial case f = 0), and by

Theorem 2(iii) that B is prime to A; so (Aa~ +kB~) is a multiple of Aif

and only if k is a multiple of l. Thus the second part of the lemma fol­

lows from the first.

In the next section we shall need a technique for deciding with as little

effort as possible whether two modular forms mod l are equal. It is often

convenient to use

LEMMA 6. Suppose that 11 and 1 2 are both in Mk ; then they are equal if

and only if for each n < k/12 the coefficients of q.l in £1 and £2 ~

equal.

PROOF. The condition is obviously necessary. Suppose it holds, and let

f 1 and f 2 be modular forms of weight k whose reductions mod tare f 1 and

£2. The standard algorithm for expressing (f 1 - f 2 ) as a polynomial of

weight k in Q,R and 6 only makes use of the coefficients of qn for

n < k/12 in (f 1 - f 2 ), and all these are divisible by l; so (f1 - f 2 ) is

in l~Q,R,6]. This proves the lemma.

We now return to the trivial cases l 2 and l = 3.

THEOREM 3. If l = 2 or l = 3 then P = Q ~ R = 1 and M
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no grading and a annihilates M.

This follows trivially from the remarks at the beginning of this sec­

tion, together with the facts that the coefficient of q in ~ is 1 and

that a~ = o.

There is as yet no satisfactory structure theory of modular forms mod

in where n > 1. At first sight it would seem natural to conjecture that

for i > 3 the ideal of those elements of ~[Q,R] whose q-series expansion

has all its coefficients divisible by in is (I,A - l)n. It is not dif-

ficult to prove this conjecture for n ~ l; but it is certainly false for

n > l.

4. The exceptional primes.

In this section we show that for any f satisfying the conditions of Theo-

rem 1 the set of exceptional primes is finite and can be explicitly boun­

ded; and for the six forms ~,Q~,R~,Q2~,QR~ and Q2R~ which are known to

satisfy the conditions of Theorem 1 we find (with one case left undeci-.
ded) the complete list of exceptional primes. This also solves our ori-

ginal problem of finding those I for which there exist congruences for

ten) or an mod I. For we have seen in §2 that to each exceptional prime

l there correspond congruences for a mod l; and the lemma that follows
p

shows that there can be no congruences for a non-exceptional prime.

LEMMA 7. Suppose that f = Ianqn satisfies the conditions of Theorem 1;

that is, it is a cusp form with a 1 = 1, an in ~ and its Dirichlet series

has an Euler product. Let l be a prime which is not exceptional for f,

d - .•. 1 Th han let N,N be non-empty open sets 1n ~I and ~ l respect1ve y. en t e

set of primes p for which p is in N- and a p is in N has positive density.
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PROOF. The first step is to show that the image of the map

(18 )

contains SL 2 (llt) x 1. By hypothesis, the projection of the image onto

the first factor contains SL 2 (Z.e.) ; so the image of the commutator sub-

group contains Corom( SL 2 C7l l » x 1. If l > 3 this commutator subgroup is

the whole of SL 2 (Zl)' by lemma 1 and the simplicity of SL 2 (Fl ). If

l = 2 or 3 and a in Gal(Kl/~) is such that Plea) is in SL2(~l) then

k-l
Xl (a) = 1

where k is the weight of f; thus Xl(a) = 1 because ~l contains no non­

trivial roots of unity of odd order.

It follows that the image of (18) consistsof au a x S with det a = Sk-l;

and since we can find an element of GL2(~l) with any assigned trace in

. .• f 1 (tr -1) h
~l and determ~nant ~n ~l - or examp e det a - t ~e map

is onto. The lemma now follows from the facts that this map induces

Frob(p) ~ a x p and that Frobenius elements are uniformly distributedp

in the Galois group.

To find the exceptional primes, at least for the first two cases in the

Corollaries to lemma 2, we replace the hypothetical congruences of Corol-

lary 2 by equivalent hypothetical identities between modular forms mod l;

and we use the results of §3 to provide decision processes for these

hypothetical identities. The first step is the following lemma, which

for fixed f leaves us only finitely many possibilities to consider.

LEMMA 8. Suppose that f,l and Pl are as in Corollary 2 to lemma 2. Then

~ (i) of that Corollary can only happen if either 2m < .e. < k or m = a

and l divides the numerator of b k ; and case (ii) can only happefi-if

l < 2k.
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PROOF. We may suppose that l > 3. Now case (i) is equivalent to (10),

and in that congruence the exponents are only significant model - 1).

Reducing them into the interval [0, i - 2] and interchanging them if ne­

cessary, we can replace (10) by

a - pm + pm' mod l
p

(19)

where 0 ~ m < m' < l - 1 and m + m' =k - 1 model -1); here m and m' can-

not be equal because their sum is odd. From this we obtain

an =n
ID am'_m(n) mod l if n is prime to i.

In general this can be written in the form

8f = em+1 Gm, - m+l (20)

where the extra 8 on each side has been put in to annihilate the coeffi­

cient of qn when n is divisible by l. This is illegitimate only when

m = 0, m' = l - 2 in which case the constant term in Gm, _ m + 1 is not

in ~; in that case we have instead pap = 1 + P mod l whence nan = 0l(n)

mod l for n prime to l and finally

l-l ,..,= e Gl +1 . (21)

By lemma S(ii) we have w(st)' <; k + l + 1. But obviously w(G2~) = 2v

whenever 2 < 2v < l - 1; and in applying lemma S(ii) iteratively to find

the filtration of the right hand side of (20) we are always in the case

of equality. So provided ,that m' -m > 1 the filtration of the right hand

side of (20) is exactly (m' -m + 1) + (m + l)(l + 1). Comparing these

two results we obtain

m' + ml + 1 ~ k if 1 < m' -m < l - 2. (22)

If l > k then m + m' ~ k - 1 by the condition below (19); and that is

only compatible with (22) if m = 0, m' = k -1 and wet) = k. But then (20)

becomes a(f - Gk ) = 0; and since (f - Gk ) must either vanish or have fil­

tration k, we deduce from lemma S(ii) that it must vanish. Examination
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of the constant term now shows that! must divide the numerator of bk •

A similar argument works for (21) and for the case mt -m = 1 in (20).

Now w(G 2 ) = ! + 1 because of B(Q,R) = P together with the non-existence

of modular forms of weight 2. Once again, in applying lemma 5(ii) re­

peatedly we are always in the case of equality; so the filtration of the

right hand side of (20) is (m + 2)(! + 1) and that of the right hand

side of (21) is !(! + 1). Comparing as before with the filtration of the

left hand side we obtain

(m + l)(l + 1) < k

if m

These certainly imply l < k.

Similarly case (ii) is equivalent to

if m
t

-m = 1,]
= 0, mt = ! - 2.

(23)

(24)

and if l > 2k and consequently wet) = k, then the filtration of the left

hand side is k + ! + 1 whereas that of the right hand side is

k + }{(l + 1)2. This contradiction completes the proof of the lemma;

for since! is odd and k is even, neither l = k nor l = 2k is possible.

With a little more trouble we can improve the result in case (ii). For

suppose that k < ! < 2k; then w(evf) = k + vel + 1) provided v < l - k,

and therefore

w(e l - k +11) = !(!+l-k) t--l tA - n(,e -A)

for some integer n > O. It may be verified that in the further applica-

tions of lemma 5(ii) needed to obtain
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no further case of inequality occurs; and since we know that that filtra­

tion is equal ~o w(81) < 2(! + 1), there can be at most one more applica­

tion of 8. It follows that l = 2k - 1 or l = 2k - 3. A similar idea can

be applied when l < k, but this is less useful since nearly all such l

are already exceptional primes for case (i).

We have still to consider case (iii) of Corollary 2 to lemma 2. Here the

situation is much less satisfactory, in that we no longer have a decision

process; the best we can do is to generate a finite list of primes which

certainly contains all exceptional primes of this kind. For choose

p + 2 such that a +0; then if l is an exceptional prime of this type
p

either l = p or l divides one of

k-14p

Since all these are non-zero (k being even), this gives a finite list of

possible l. There are some further conditions on l in this case, which

reduce the calculations involved. It was shown at the end of §2 that

there are primes p which are quadratic non-residues mod l and for which

2 k-1 °l divides ap - 2p ; Slnce k is even, it follows that 2 is a quadratic

non-residue mod l. Thus

l == ±3 mod 8;

moreover taking p = 2 in the earlier condition we can now reject the se-

cond and fourth possibilities, so that

l d o °d (a
2

± 2k / 2 ).l.Vl. es a 2 or

Again, since the image of ;l is isomorphic to S4 there is composite epi­

morphism

and hence there is a field K which is normal over ~ with Galois group 83
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and which is unramified except at l. The subfield of K fixed under A3

must be ~(~), where the sign is plus if t = 5 mod 8 and minus if l =3

mod 8; and K must be unramified over this field. Classfield theory now

shows that

~(~l) has class number divisible by 3.

We can sum up our results as follows

THEOREM 4. Given a modular form f satisfying the conditions of Theorem

1, there are only finitely many primes exceptional for f. Those of ty­

~ (i) and (ii) can be explicitly determined; and there is an expli­

citly determinable finite set which contains those of type (iii).

We now apply these methods to the six known modular forms which satisfy

the conditions of Theorem 1. For this purpose it is convenient to have

a formula for the action of a power of e on a modular form. Let f be a

modular form of weight k, and write

where we have identified f with its expression as a polynomial in Q and

R. Then for any n > 0 we have

n! (k+n-1)In
= L

v=O v! (n-v)! (k+v-1)I
(25)

The proof is by induction on n, using (15) and the third equation (14).

COROLLARY. (i) for the six known modular forms which satisfy the condi-

tions of Theorem 1, the exceptional primes of type (i) and the associated

values of m are given by the following table.
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Form k 2 3 5 7 11 13 17 19 23 Other l

8 12 0 0 1 1 No 691

Q8 16 0 0 1 1 1 No 3617

R8 18 0 0 2 1 1 1 No 43867

Q28 20 0 0 1 2 1 1 No No 283,617

QR8 22 0 0 2 1 No 1 1 No 131,593

Q2R8 26 0 0 2 2 1 No 1 1 No 657931

Here the first two columns give the form and its weight, the last column

gives the exceptional l > k (for which necessarily m = 0), and the other

columns give for each l < k the value of m if l is exceptional, or the

word 'No' if l is not exceptional.

(ii) For these six forms, the only exceptional primes of type, (ii) are

l = 23 for 8 and l = 31 for Q8.

(iii) With the possible exception of l = 59 for Q6, there are no excep­

tional primes of type (iii) for any of these six forms.

PROOF. The results for l = 2 and l = 3 (for which the general machinery

is not applicable) follow from Theorem 3 and the congruences

T(p) - 0 mod 2, T(p) = p + p2 mod 3

which are weaker versions of (2) and (3) respectively. In the remaining

possible cases of (i) with l < k, the only possible value of m can most

easily be determined from (19) when p = 2 or 3, together with (22) and

(23); and indeed in the case when l is not exceptional this method proves

that there is no possible value of m. So it is only necessary to check

(20) for the positive cases in the table. This can be done either by

calculations with polynomials in Q and R or by means of lemma 6.

For (ii) it is only necessary to consider l = 2k-l, l = 2k-3 and those

l < k which are not exceptional of type (i). For those cases which have
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to be rejected, the simplest method is to find a prime p which is a

quadratic non-residue mod l and to verify that a is not divisible byp
l; for the cases with l < k we can also argue as in the paragraph fol-

lowing equation (24). In the two remaining cases l = 2k-l and it fol­

lows from (25) that the right hand side of (24) is in Mk +I +1 • Since

this is also true for the left hand side, we have only to check that

the coefficients of q, q2, q3 and q4 agree - this last only for k = 16;

and this can be done without even calculating them in the case of ~,

since 2 and 3 are quadratic residues mod 23. It is however necessary to

check that for Q~ the coefficient a 3 = -3348 is divisible by 31.

For (iii) we have already outlined the method of calculation together

with some convenient short-cuts; these enable us to reject without dif-

ficulty all values of l except the one given in the Corollary. This con-

eludes the proof of the Corollary.

For exceptional primes of type (i), nothing more needs to be done in res­

pect of the homomorphism ;l and the associated congruence mod l; con­

gruences modulo higher powers of l, and the information about Pi that

can be derived from them, will be discussed in §5. For exceptional pri-

mes of types (ii) and (iii) however, there still remain interesting ques-

tions. For example, we have now proved the first line of (6) but we have

not proved the second or third; nor have we in this case determined

either the kernel or the image of P~3. It is however clear that the

kernel of the homomorphism

where C is a Cartan subgroup and N its normalizer, consists of those

elements of the Galois group which are trivial on ~(ver); and hence for

each of our two examples of case (ii) the image of;l is canonically

isomorphic to Gal(K/~) where K is some unramified abelian extension of

~(vC11. In the case k = 12, l = 23 it is clear from (6) that K is the
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absolute class field of ~(~); for the three lines of (6) correspond

respectively to (p) remaining prime, splitting as a product of princi­

pal ideals, and splitting as a product of non-principal ideals, in

~(~). From this point of view the natural way to prove (6) is by

proving

( 26)

The case k = 16, l = 31 is extremely similar, the analogue of (6) hol­

ding with the obvious modifications; the class number of ~(~), like

that of ~(~), is 3. The analogue of (26) for this case is

2 2
~~q2m + mn + 4n mod 31. ( 27)

Wilton [13] proved (6) by means of (26); but this very simple proof of

(26) depends on the product formula (1) and there seems little prospect

of a similar proof of (27). However, we can argue as follows. The right

hand side of (26) or (27) is a modular form of weight 1 for fo(l) for a

certain quadratic character; so its square is a modular form of weight 2

for fo(l). By a theorem of Serre, proved in his lecture at this confe­

rence, any modular form of weight 2 for fo(l) whose q-series has integral

coefficients is congruent mod l to a modular form of weight (1 + 1) for

the full mopular group whose q-series ha.s integral coefficients, and

vice versa. So the square of each side of (26) or (27) , reduced mod l,

lies in Ml +1 . By lemma 6, to prove (26) or (27) it is now enough to

check it for the coefficients o 1 2 and this isof q ,q and q ; easy.

There remains the case i = 59 for Q~. With the help of a computer I ha-

"f" d -15 2ve ver~ ~e that p a p - 0,1,2 or 4 mod 59 for all p < 500; so there

can be no reasonable doubt that 59 is an exceptional prime of type (iii)

for Q~. There remains the problem of proving it. Let K be the fixed

field of the kernel of the homomorphism
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then K/~ is ramified only at 59 and is a normal extension with Galuis

group isomorphic to 8 4 . These specifications are enough to determine

K. Indeed corresponding to the sequence of subgroups each normal in

its predecessor

(where V is non-cyclic of order 4), we have the tower of fixed fields

~ c ~(vC59) C L C K.

Here L must be the absolute class-field of Q(vC59) , which is the split­

ting field of x 3 + 2x - 1 = O. By a detailed study of the field L it

can be shown that there is just one possible K and that it is the split-

ting field of

Lifting the image of the Galois group back from PGL 2 (F 59 ) to GL 2 (F S9 ) is

easy; but it is not very useful because the result is too large. It is

7 7 29better to study not p but peX because det 0 (p@X ) = X ; and reduced

mod 59 and applied to Frob(p) this gives the quadratic residue symbol
~

<!9). Thus the image of p~x7 in GL 2 (F 59 ) is a group 84of order 48, and

its associated field K' is a quadratic extension of K. Now lift 84back

to characteristic zero, as a subgroup of GL 2 az[yC2]); since there is a

natural isomorphism Gal<K'/~) ~ S4 this induces an Artin L-series asso­

ciated with K'. According to the Artin conjecture, this series and all

those obtained from it by twisting with a congruence character can be

analytically continued to holomorphic functions on the whole s-plane,

satisfying functional equations of standard type. Suppose this is so;

then by a theorem of Weil [12] the Mellin transform of the Artin L-se-
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ries will be a cusp form of weight 1 for r o (59 2), for a certain quadra­

tic character. By construction this cusp form will have coefficients in

~[~] and will be congruent mod 59 (or more precisely modulo one of the

prime factors of 59 in~(~]) to e7 (Q6).

To determine whether such a cusp form exists is a strictly finite cal-

culation, which does not depend on the various hypotheses which I have

used to render its existence plausible. Unfortunately, in the present

unsatisfactory state of our knOWledge about modular forms of weight 1 it

is not an attractive calculation. Suppose however that such a form was

shown to exist, and let its q-series expansion be Ib qn, wheren

The Ramanujan-Petersson conjecture implies

bp = 0, ± 1, ± ~ or ± 2 (28)

for all p, and even a statistical version of the conjecture (which should

be provable by classical methods without too much trouble in this case)

would prove (28) for all p outside a set of density zero. It would fol­

low that for the coefficients of Q6

-15 2P a p ::: 0 , 1 ,2 or 4 mod 59

either for all p or for all p outside a set of density zero. By lemma 7

this would be enough to prove that 59 is an exceptional prime of type

(iii) for Q~.

5. Congruences modulo powers of l.

In this case the theory is much less complete, and to the extent that

it exists it is much more dependent on heavy algebraic manipUlations.

We therefore confine ourselves to certain selected topics and do not

treat even those completely.
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If a congruence such as (2) or (3) is true, then it can be proved by

brute force. We illustrate this by considering (2). For any integer

is a modular form of weight 12 for r o (64), and by combining these forms

we find that for any v so is

ET(n)qn where the sum is over all n - v mod 8.

nA similar argument works for Eo 11 (n)q ; so each of the four congruences

(2) asserts the congruence of two modular forms of weight 12 for ro (64).

Such modular forms are algebraic and integral over~[Q,R,6], so such a

congruence is equivalent to a certain isobaric congruence between modu-

lar forms for the full modular group. In view of the remark following

(11), to prove this last congruence one writes the difference of the two

sides as a polynomial in P,Q and R which is linear in R, and verifies

that each coefficient of the polynomial is individually divisible by the

relevant power of 2. Of course a process as crude as this would be in-

tolerably tedious to carry through; but it is one in which there is con-

siderable scope for replacing hard work by ingenuity.

There is another reasonable method, though the proofs which it would pro-

vide would be even less illuminating than the existing ones. As was

shown above, anyone of the congruences (2) is equivalent to a congruen-

ce between two modular forms of weight 12 for ro (64); and just as in

lemma 6, to prove this congruence it is enough to verify it for a limi-

ted number of coefficients - a task which is straightforward on a com-

puter. Methods analogous to this have been used by Atkin and his pupils;

see for example [lJ.

Similar remarks apply to (3), though here there is the additional com-

plication that the congruence to be proved will involve 8. However, 8

can be expressed in terms of 0, which is an operator which takes modular
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forms to modular forms, and P which is congruent modulo any assigned

prime power to a modular form, as is proved in Serre's lectures at

this conference. However, it would seem that we do not yet have the

right point of view for attacking these problems.

We now show that by means of Theorem 1 the middle equation (6) can be

painlessly improved to

(29)

For if p is such a prime P23(Frob(p» is the identity, and hence the

image of Frob(p) in GL 2GZ/(23 2»has trace = 1 + det as elements of

~/(23)2. This is just (29). By a refinement of this argument we can
_ "'-i

determine the image of P23' which we shall denote by G. Let G and G

be the images of G in GL2~/(232» and GL 2 (F 23 ) respectively. We have

already shown that G is isomorphic to S3' so without loss of generality

we can assume that G consists of the six matrices

(
1 0) (-1 -1) (0 1) (0 1) (1 0) (-1 -1)
o 1 ,\1 0, -1 -1 ,1 0, -1 -1 '\ 0 1

Let V be the kernel of the homomorphism

(30)

and let H be the intersection of G- and V. There is a natural action of

GL2 (F 23 ) on V given by a : v ~ s v s-1 where v is in V and s is any pull­

back of a for the map (30); this induces an action of Gboth on V and on

H. Moreover the map

(1 + 23a 23bJ~ (a,b,c,d)
\ 23c 1 + 23;

identifies V with a vector space of dimension 4 over F23 • The irreduci­

ble components of V under the action of G are as follows :
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Vi' the multiples of (1,0,0,1);

v2 ' the multiples of (1,2,-2,-1);

V3 defined by a + d = a - b + c = 0.
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Since G acts on H, H must be a sum of Vi. If H did not contain Vi' det

would be constant on H and so p11 = lmod 23 2 for all p of the form u 2 +

23v 2, which is absurd. Similarly if H did not contain V2 we would have

a - d = 2(b - c) on H, and this would imply that (det + 2 tr) would be

constant on the inverse image of

(
-1 -1) and (0 1)

1 ° -1-1

in G-. Translated into terms of T(p}, this -would mean that pll + 2t(p)

would be congruent to some constant mod 23 2 for all p of the form

- the case in the last line of (6); this can be seen to be false by con-

sidering the case p = 2 and p = 3. Finally, if H did not contain V3 a

similar argument would show that T(p) was congruent to some constant

mod 23 2 for all p which are quadratic non-residues mod 23; and this

again is false. So H = V. Now an argument like those in the proof of

lemma 1 or the last part of the proof of Theorem 6 shows that G is the

entire inverse image of Gunder the homomorphism GL 2 az 23 ) ~ GL 2 (F 23 ).

This result is of course independent of the particular representation of

G chosen above.

We can also make some further additions to (2), though of a rather dif-

ferent kind. It turns out that the congruences (2) are enough to de­

termine the image not merely of P2 but of P2 essentially uniquely. The

exact statement and proof of this fact are extremely tedious and are
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therefore relegated to the Appendix. However, certain consequences of

independent interest can be easily stated. For example, the last three

congruences (2) are best possible in the following sense.

• f - .THEOREM 5. Let N,N be non-empty open subsets 0 ~2'~2 respectlvely

such that no element of N- is congruent to 1 mod 8 and any a in Nand 8

in N- satisfy the appropriate one of

a == 1217(1 + ail) mod 213 if a - 3 mod 8,

a == 1537(1 + 8 11 ) mod 212 if a - 5 mod 8 ,

a == 705(1 + all) mod 214 if a - 7 mod 8.

Then there are an infinity of primes p with p in N- and t(p) in N.

PROOF. Denote by G the image of P2' which is described in detail in the

Appendix. By a straightforward but tedious calculation one verifies

that to every a and 8 satisfying the congruence conditions above, there

exist elements of G with trace a and determinant S11. The theorem now

follows because Frobenius elements are dense in Gal(K2/Q) and therefore

their images are dense in G. The corresponding statement for the first

congruence (2) would be false. Indeed, for any given B == 1 mod 8 in ~~

let S = Sea) denote the set of a in~2 such that there is an element of

G with trace a and determinant all. It may be shown that Sea) is a union

of complete residue classes mod 217 and that it only depends on a mod 217.

By (2), sea) lies entirely within the residue class of (1 + all) mod 211 ;

but it is never the whole of this class, a~d it never lies wholly within

one of the two residue classes mod 212 contained in this class. Thus

the first congruence (2) is best possible in the sense that it cannot be

improved to a congruence for t(p) mod 212 , no matter how good a 2-adic

approximation to p we have; but unlike the other three congruences (2)

it is not best possible in the sense of Theorem 5.
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COROLLARY. The conjecture that 2n II (p + 1) implies 2n II T(p) is false

for each n > 13.

This conjecture is of some interest since if it were true for all n it

would follow that T(p) is never zero.

Despite this theorem, one can obtain congruences modulo higher powers

of 2 provided that one supplies more information about p; and the sim-

plest way to obtain and prove such congruences is by considering G. Sup-

pose for example that we confine ourselves to the case p = 1 mod 4, so

that p = u 2 + v 2 in essentially just one way; then we can ask for con-

gruences which express T(p) in terms of p, u and v. As in the Appendix,

denote by G15 the subgroup of G consisting of those matrices whose dete~

minant is congruent to 1 mod 4; let K = ~(i) and let Kab be the maxi­

mal abelian extension of K inside K2 . Then K is the fixed field of p;l
G15 and 2-adic knowledge of u, v and p is essentially the same as know­

ing the Frobenius element of (u + iv) in the extension Kab/K. Indeed

there is a composite homomorphism

where the square brackets on the right denote the commutator subgroup.

Unfortunately, though the left hand isomorphism is canonical thereis no

direct method of specifying the right hand homomorphism; all we know is

that det 0 ~ is induced by

Since the natural map G15/[Gl~G15J ~ G/[G,G] has finite kernel, this

leaves only finitely many possibilities for~. If ~ is known, then for

. 2 2 k h £'[G G .. .any g1ven p = u + v we now t e coset 0 15' 15] 1n WhlCh the lmage

of Frob(u + iv) lies; and so we know the set of traces of elements of

this coset. Since this set of traces contains T(p), this specifies in

terms of p,u and v an open subset of ~2 in which T(p) lies; and since
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[Gls,G1S] is strictly smaller than [G,G], we can reasonably hope that

this open subset is smaller than that given by (2).

So to each of the finitely many possibilities for ~ there corresponds a

set of hypothetical congruences for T(p). All but one of these hypothe-

tical sets can be shown to be false by examining small values of p; the

remaining one must correspond to the true ~ and is thereby proved. The

details of this calculation are quite unsuitable for pUblication; the

results are four congruences of which a typical one is

where p = u 2 + 4b 2• However, to show that this extra information does

not always lead to an ugly result, we conclude by stating what appears

to be the analogous result for l = 3. Write for p == 1 mod 3

4p = L2 + 27M2 where M - 0 or 1 mod 3.

Then

-108 to mod 3
8

if M E 0 mod 3,T(p) _ p119 P =
- - 3 6 (M + 7) mod 38 if M == 1 mod 3.,

However, thjs is based only on numerical evidence and has not yet been

proved. The first congruence (3), when n is prime, is just the state­

ment that the left hand side is divisible by 36 .
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APPENDIX

We shall consistently use the following notation.

An element a of GL 2 (Z2) will be written as

SwD-43

here A,B,CtD are not necessarily integral, though they will be for those

a which primarily interest us. Moreover

S = a + d, ~ = ad - bc

will denote the trace and determinant of a; in particular it follows that

and therefore that

(31)

(32)

whenever A,B and C are integral. Finally e,~,~ will be the characters

of ~ mod 8 whose values are given by the following table :

I ~ mod 8 1 3 5 7

e 1 1 -1 -1

~ 1 -1 1 -1

~ 1 -1 -1 1

If we have to consider several a simultaneously, we shall distinguish

them by subscripts and we shall attach the corresponding sUbscripts to

the associated letters a,b,c,d,A,B,C,D,S,~,e,~,~.

Let Go be the set of elements a of GL 2 GZ 2) which satisfy the conditions
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Band C are both even if ~ =± 1 mod 8 and both odd if

~ = ± 3 mod 8,

A - 1/1 (~ + 2e - 3 4» (3~ + 106 - 3 4> ) + ~ (1 - 1/1)

(3 3)

2C 2 mod 64. (34)

(Here and throughout this appendix, all products will be integer-valued

even when they appear to con~ain a power of ~.) It may be verified by

direct calculation, and will be implicit in the proof of the theorem that

follows, that Go is actually a group; and for a similar choice of rea­

sons each element of Go satisfies the appropriate one of the following

congruences :

s - (1 + ~) mod 211 if ~ =1 mod 8,

S - 1217(1 + ~) mod 213 if ~ =3 mod 8 ,

S - 1537(1 + ~) mod 212 if ~ - 5 mod 8,

S - 705(1 + ~) mod 214 if ~ - 7 mod 8.

(35)

These correspond to the congruences (2) of Kolberg for T(p).

THEOREM 6. Let G be a closed subgroup of GL2(~2) such that

(i) the homomorphism det : G ~~~ is onto, and

(ii) every element a of G satisfies the appropriate congruence condi-

tion (35).

Then G can be transformed into Go by conjugation by an element of GL2(~2).

That we must allow conjugation by an element of GL2(~2)' and not merely

by an element of GL 2QZ2)' corresponds to the fact that in Deligne's proof

of Theorem 1 the space on which the representation acts i.s canonically

defined, but the integral lattice in it is not canonical.



45

SwD-45

The proof will consist of a number of steps, gradually refining G until

it is contained in Go; finally we show that a closed proper subgroup of

Go cannot satisfy condition (i) of the Theorem. We begin with a partial

normalization of G.

LEMMA 9. By suitable conjugation we can assume that G contains an ele­

~ 00 such that

(36)

~ = -1.o

Moreover with this normalization A,B,C,D are integers for every ° in G;

and A is even if 6 = ± 1 mod 8 and odd if 6 = ± 3 mod 8.

PROOF. The congruences (35), taken mod 29 , reduce to

=_ [2
8

mod 929 if 6 =3 mod 8,
(a - 1)(d - 1) - bc

o mod 2 otherwise.

(37)

In particular a + d is always even, so the image of G in GL 2(F 2) con­

sists of matrices of zero trace; hence this image must be the identity

or one of the three conjugate subgroups of order 2. So after conjuga-

tion we may assume that a,d are odd and c even for each ° in G; and it

now follows from (37) that 41bc always. Let 2S,2 Y be the greatest po-

wers of 2 which divide all b,c respectively, where ° runs through the

elements of G. If 01' 02 are such that 2S IIb 1 and 2YJlc 2 then for one

of 01' 02 and 01 02 we have both 28 11b and 2Yllc; and now 41bc gives

8 + Y > 2. By multiplying every b and dividing every c by a fixed po-

wer of 2, which is an allowed transformation of G, we can certainly en-

sure that 8 > 1 and Y > 1.

Now choose an element 00 of G with 6
0

= -1; by (35) it has 214 18 ando
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hence its characteristic roots are in~2 and are congruent to ± 1 mod

213 • By conjugation we can make 00 diagonal, which proves (36); and

since the conjugation is by a matrix with integer elements and deter-

minant a unit or twice a unit, and band c are even before the conju-

gation, the q in G are still integral after the transformation. How-

ever we have temporarily lost all information about Band y.

Applying (37) to 00
0

, which mod 213 only differs from 0 in the signs of

band d, we have

[

28 mod 29 if ~ == 5 mod 8,
(a - 1)(-d - 1) + bc == 9

o mod 2 otherwise.

Adding this to (37) we obtain 28 j<a - 1) if ~ == ± 1 mod 8 and 27
11 (a - 1)

if ~ - ± 3 mod 8, which

that 2 7 JbC, whence ad ­

ditional help, (37) now

proves the assertions about A. It follows also

bc = ~ shows that d == 6 mod 27 • With this ad-

gives 29 1bc. With the same definition of B,y

as above, the argument we have already used now shows that B + Y > 9;

and after the allowable transfer of a power of 2 between band c for

each a in G, we may suppose that B > 4- and y > 5. Hence Band C are in­

tegers, and we have already seen that D is an integer. This completes

the proof of the "Lemma.

Using (32), the congruences (35) can be rewritten in the form

(38)

mod 1+ if A - 1 modBe

2BC 1/2A(t.-l) - II.. ( 19 ( 1+A) ) mod 32 if t. - 3 mod

Be II.. A(t.-l) - 3(1+t.) mod 8 if A - 5 mod

2BC - 1/~A (t.-1) - II.. ( 11 ( 1+t. ) ) mod 64 if t. -

Note that D and t. are linked by the congruence

D - 1/2 (t. - 1) mod 64
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which is a weak form of (31). It is also convenient at this point to

record some formulae for the product of two matrices in A,B,C,D form;

all mod 27 •

LEMMA 10. Each a in G satisfies B + C~ == 0 mod 8 and the congruence con­

ditions stated in the following table :

6 mod 8 ± 1 ± 3

A mod 16 Y. (a6 - 1) - 2C 2 1/. ( 3 a6 + 19)

B and C even odd

PROOF. As in the proof of the previous lemma we consider also 00
0

where

0
0

satisfies (36). Applying (38) to 000 and confining ourselves to the

case 6 == ±3 mod 8 we obtain

Y.A(6 + 1) - BC == 3(1 - 6) mod 8 if 6 =3 mod 8,

~A(6 + 1) - 2BC == 1~ (19(1 - 6» mod 32 if 6 = 5 mod 8.

Combining one of these equations with the corresponding equation (38),

and using the character a to unite the two cases, we obtain first

A - Y. (- 5 a6 + 43) == ~ (3 a6 + 19) mod 16 if 6 - ± 3 mod 8

and then on substituting this back,

BC E ~ A(6 + a) + 3(A - a) == ...1. (36 a + 7) (6 + 21 e) + 5 a mod 8.16

But the first term on the right vanishes mod 8 because each factor is di-

visible by 8 and one of them by 16; so this congruence reduces to

BC == 5a mod 8, which is equivalent to Band C odd, B + C6 == 0 mod 8.
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This proves the last column of the table.

Any ° in G with 6 - 1 mod 8 can be written as

It follows immediately from the multiplication formulae (39) that Band

C are even and B + C - 0 mod 8; moreover mod 16 we have

This proves the statements in the table for 6 = 1 mod 8, and those for

6 =-1 mod 8 follow on mUltiplication by 00. This completes the proof

of the lemma.

We now complete the normalization of G. Fix an element 03 with ~3 - 3

mod 8; then by lemma 10 we have

A3 - y, (6 3 + 5) (3 6 3 + 13) + 3 - 2C~ mod .16,

for the last term is just -2 mod 16 since C3 is odd. We can therefore

find a 2-adic unit A such that multiplying the last term on th~ right

by A2 replaces the congruence by an equality. Now for every cr in G mul­

tiply c by A and divide b by A; this is an allowed transformation and

does not affect the representation of 00 given by (36). So henceforth

we can assume that there is a 03 with

A3 = ~ (6 3 + 5) (36 3 + 13 ) + 3 - 2C~, 6 3 - 3 mod 8.

COROLLARY. With the further normalization above,

A = 1/, (6 - e) (36 + 7e) - 2C 2 mod 32 if 6 - ± 1 mod 8,

A _. I~ (6 + 5e) (36 +13 e) + 3 - 2C 2 mod 32 if 6 - ± 3 mod 8.

(40)
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PROOF. Suppose first that ~ =-1 mod 8; then the last congruence (38)

together with the facts already proved that C is even and B =C mod 8

give

2C 2 - ~A(~ - 1) = 1/4 (11(1 + ~» mod 32,

and elementary manipulation transforms this into the statement in the

Corollary. Next, if ~ = 1 mod 8 apply the result just obtained to 000'

where 00 satisfies (36). Finally suppose that ~ = ± 3 mod 8 and write

0 1 = 00;1 where 03 satisfies (40); thus 6 = 61 and 0 has the property

stated in the Corollary since ~1 - ± 1 mod 8. Also (39) implies

Hence, working mod 32,

A - Ya (~ + 56) (3~ + 136) - 3 + 2C 2

by (40) and the Corollary for 01. This last expression vanishes mod 32,

and this completes the proof of the Corollary.

LEMMA 11. G is contained in G .o

•. ,.-:.
PROOF. Suppose first that ~ = 3 mod 8; sUbstituting the value for A mod

32 given by the last Corollary into the second congruence (38) we obtain

2BC + C2(~ - 1) =~ + 9 mod 32.

Since C is odd, for given C and ~ this congruence determines B mod 16;

and as one can easily check that it is satisfied by
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B = }1(~2 + 7) - C~ mod 16, this is the unique solution. Thus the con­

dition (33) certainly holds for elements of G with ~ = 3 mod 8. It al-

so holds when ~ = 5 mod 8, because in this case we can apply the result

just proved to 000 where 00 satisfies (36). Now suppose that

~ = !1 mod 8, so that we can write a = 0103 where ~1 = !3 mod 8. Using

(39) and the result already established, we have mod 16,

and this completes the proof of (33).

To prove (34) we suppose first that ~ = 7 mod 8 and substitute the value

of B mod 16 given by (33) into the last congruence (38). This gives

which for given values of C and ~ determines A mod 64; as one can easily

check that it is satisfied by

A == ~ (~ + 1) (3~ - 7) - 2C2 mod 64

this must be the unique solution. This proves (34) for ~ == 7 ~od 8,

and it follows at once for ~ == 1 mod 8 by applying the result just ob-

tained to ocro. Now suppose that ~ =± 3 mod 8 and write 0 =0 10 3 where

03 satisfies (40) and therefore ~1 =± 1 mod 8. Using (39) and substi­

tuting for B1 from (33) we have C =C1 + ~lC3 mod 32 and

Using (34) for A1 , a case in which it is already proved, and (40) for A3

we obtain, all mod 64,

A - X (~ + 5e) (3~ + 13 e) - 3 + 2C2
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and this last expression vanishes mod 64. This completes the proof of

the lemma.

To prove the Theorem it only remains to show that G cannot be strictly

smaller than Go. We show first that for any fixed A all eight pairs of

congruence classes for Band C mod 16 allowed by (33) and the parity

condition just before it, actually occur. It is enough to prove this

in the special case A = 1, since the ° in G with A equal to some fixed

Ai are obtained from one of them by mUltiplication by the elements of G
-1with A = 1. Choose 01 in G with Ai = 3; then 02 = 00 0100 will certain-

-1ly have A2 = 3 and B2 = -B1 mod 4. Thus ° = 0102 will have A = 1 and

B = B2 - B1 = 2 mod 4; and 1,0,02 , •.. ,07 will lie one in each of the

eight allowed classes.

Now for n = 0,1,2, ... let H denote the set of ° with A = 1 andn

clearly each Hn is a group and Go J Ho J H1 J •••• The result we have

just proved states that G meets every coset of Ho in Go; so to prove

G = Go it is enough to prove that G J Ho . Since G is closed and the Hn

form a base for the neighbourhoods of the identity in Ho ' it is enough

to prove for n = 0,1,2, ..• that G meets each of the eight cosets of

Hn + 1 in Hn . We begin with the case n = O. For 01 and 02 in G and

-1 -1 h- h - h f l-t f 11 f° = 010201 02 ' w lC we use ln t e orm 0102 = 00201' 0 ows rom

(39) that
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A - 4(B1C2 - B2C1 - B(C
2 + A2C

i
» mod 27 ,

BA1A2 - B1 (A 2 - 1) - B2 (A 1 1) mod 2 7 ,

C - C2 (A1 - 1) - C1 (A 2 - 1) mod 2 7 •

(41)

Moreover A = 1. Suppose first that Ai = -1, B1 = C1 = 0 mod 16 and that

A2 = 9 so that B2 + 9C 2 = 8 mod 16. If B2 - 0 mod 16 then we obtain

whereas if B2 - 8 mod 16 we obtain

A _ 0 mod 27 , B - 16 mod 25 , C _ 0 mod 25 .

Again take A1 = 1, A2 = 9 and B1 - B2 - 2, C1 - -2, C2 - 6 all mod 16;

then we obtain

A _ 64 mod 2 7 , B _ 16 mod 25 , C _ 16 mod 25 .

The three elements 0 thus obtained generate Ho /H1 ; so G meets each co­

set of H1 in Ho .

We now proceed by induction. There is a natural isomorphism

Hn- 1 /Hn ~ Hn /Hn +1 obtained by doubling A,B and C; and for any 0 in Hn - 1

the map tha~ sends 0 to 0
2 induces this isomorphism. So if G meets

every coset of Hn in Hn - 1 , it meets every coset of Hn +1 in Hne This

completes the proof of the Theorem.

As was explained in §5, for certain purposes it is useful to know the

commutator subgroups of G and of some of its subgroups. It is easy to

check from (41) and the argument following it that [G,G] = G n SL2 az 2 ).

Indeed this is predicted by the general theory, for the composite map
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of which the components are induced respectively by P2 and det, is X~l

which is an isomorphism by class field theory; and since the left hand

map is onto, the right hand one must be an isomorphism.

Now for v = 3,5 or 7 denote by G1v the subgroup of G consisting of those

a for which f1 - 1 or v mod 8, and denote by G1 the subgroup of G for

which t::. - 1 mod 8. The argument that proved G :J H only used the com-o

mutators of elements of G17 ; so it certainly proves [G17 ,G17] :J Ho ' and

it now follows easily from (41) that (G17 ,G17] consists of those ele­

ments of [G,G] for which Band C are divisible by 4.

It is convenient next to consider the commutator subgroup of G1 • It is

easily verified that if a
1

and a
2

are in G1 then the congruences (41)

hold mod 28 • Now f1 1 = t::. 2 = 1, B1 = 16, C1 = 0, 82 = -2, C2 = 2 gives

27 11A, 2
8 1B, 2S

JC; and t::. 1 = 1, t::. 2 = 9, B1 = 16, -B 2 = 8 , C1 = C2 = °
gives 2

8 1A, 2 7
11 B, 2

8 1c; and t::. 1 = 9, t::. 2 = 1, B1 = 0, B2 = -2, C1 = 8,

C2 = 2 gives A - 192, B - 144, C - 16 all mod 28 • It follows by an ar-

gument similar to the one used to prove G :J Ho that [G1 ,G1] contains

all a with f1 = 1, 161c, 27 I(B-C) and 27 '(A-4C). Conversely one shows

that these conditions are implied by (41), so that they specify [G1 ,G1]

precisely. In particular [G1 ,G1] contains all a with ~ = 1 and A,B,C

all divisible by 27 ; so to find [G13 ,G13] and [G15 ,G15 ] we need only

find which cosets are allowed by (41). On the one hand we find that

t::. 1 = t::. 2 = 5 mod 8 gives all the residue classes with sic, B = 5C mod 64,

and t::.
1

= 1, t::.
2

= 5 mod 8 gives nothing more; so these congruences speci­

fy [G15 ,G15]. On the other hand f1 1 = ~3 = 3 mod S gives all the residue

classes with 41C, B = 3C mod 32, and ~1 = 1, f1 2 = 3 mod 8 gives nothing

more; so these congruences specify [G13 ,G13]. We sum up these results

as
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THEOREM 7: The commutator subgroup of G is G n SL2 OZ 2). The commutator

subgroups of G1 , G13 , G1S ' and G17 consist of the a satisfying addition­

al conditions as follows.

G1 2
4 1c, 2 7

1(B-C> , 27 j(A-4C>.

G13 41c, 2 5 !(B-3C).

G15 2 3 1c, 2 6 1(B-SC> •

G17 41B •
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