Partial exam Algebra, ENS Ulm, November 7th 2023

No document allowed. Exam duration 2h. It is not necessary at all to answer all the questions to obtain the maximal score. All answers must be carefully justified.

Problem 1. Let $n \geq 1$ be an integer. By an n-graph we shall mean a subset $\Gamma \subset \mathrm{P}(\{1, \ldots, n\})$ consisting of 2 -element subsets of $\{1, \ldots, n\}$. Those subsets will also be called the edges of the graph Γ. For instance, the six figures below define ${ }^{1}$ five 4-graphs (the last two being the same), in which the edges are represented by lines :

B

C

D

E

E

Let Γ be an n-graph. For $i \in\{1, \ldots, n\}$ we set $V_{\Gamma}(i)=\{j \in\{1, \ldots, n\} \mid\{i, j\} \in \Gamma\}$ (set of neighbors of i in Γ) and $\mathrm{v}_{\Gamma}(i)=\left|\mathrm{V}_{\Gamma}(i)\right|$. We finally define the symmetry group of Γ as

$$
\mathrm{G}(\Gamma):=\left\{g \in \mathrm{~S}_{n} \mid \forall i, j \in\{1, \ldots, n\}, \quad\{i, j\} \in \Gamma \Longrightarrow\{g(i), g(j)\} \in \Gamma\right\}
$$

(i) Show that $\mathrm{G}(\Gamma)$ is indeed a subgroup of S_{n}.
(ii) Let $i \in\{1, \ldots, n\}$ and $g \in \mathrm{G}(\Gamma)$. Show $g\left(\mathrm{~V}_{\Gamma}(i)\right)=\mathrm{V}_{\Gamma}(g(i))$ and $\mathrm{v}_{\Gamma}(i)=\mathrm{v}_{\Gamma}(g(i))$.
(iii) For each of the five 4-graphs Γ above, give without proof a group isomorphic to $\mathrm{G}(\Gamma)$ in the following list : $1, \mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 4 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, \mathrm{~S}_{3}, \mathrm{D}_{8}, \mathrm{H}_{8}, \mathrm{~S}_{4}$.
(iv) (continuation) For two graphs Γ of your choice among those five, justify your answer. For this, you may first determine the map $\mathrm{v}_{\Gamma}:\{1,2,3,4\} \rightarrow \mathbb{N}$ and list all the elements of $\mathrm{G}(\Gamma)$.

In the sequel, we are interested in the Petersen graph. This is the 10 -graph P defined by $\mathrm{P}=\{\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{1,5\},\{6,8\},\{8,10\},\{7,10\},\{7,9\},\{6,9\},\{1,6\},\{2,7\},\{3,8\},\{4,9\},\{5,10\}\}$.
The two following figures give two representations of P :

P

Our goal is to show $\mathrm{G}(\mathrm{P}) \simeq \mathrm{S}_{5}$. As any subgroup of S_{10}, the group $\mathrm{G}(\mathrm{P})$ naturally acts on $\{1, \ldots, 10\}$. For $I \subset\{1, \ldots, n\}$ we set $\mathrm{G}(\mathrm{P})_{I}=\{g \in \mathrm{G}(\mathrm{P}) \mid g(i)=i, \forall i \in I\}$.
(v) With the help of the figures above, give an order 3 element and an order 5 element in $\mathrm{G}(\mathrm{P})$.

[^0](vi) Show that $\mathrm{G}(\mathrm{P})$ acts transitively on $\{1, \ldots, 10\}$.
(vii) Show that $\mathrm{G}(\mathrm{P})_{\{1,2,5,6\}}$ is generated by the element $(37)(410)(89)$.
(viii) Show that we have a short exact sequence $1 \rightarrow \mathrm{G}(\mathrm{P})_{\{1,2,5,6\}} \rightarrow \mathrm{G}(\mathrm{P})_{\{1\}} \rightarrow \mathrm{S}_{\{2,5,6\}} \rightarrow 1$.
(ix) Prove $|\mathrm{G}(\mathrm{P})|=120$.
A tetrad of P is a 4-element subset $T \subset\{1,2, \ldots, 10\}$ such that $\forall i, j \in T,\{i, j\} \notin \mathrm{P}$ (in other words, T does not contain any pair of neighbors in P$)$.
(x) Show that there are exactly two tetrads containing 1, say T and T^{\prime}, as well as $T \cap T^{\prime}=\{1\}$.
(xi) Show that P contains exactly 5 tetrads.
(xii) Show that there is an injective group morphism $\mathrm{G}(\mathrm{P}) \longrightarrow \mathrm{S}_{5}$.
(xiii) Conclude.
(xiv) Prove the existence of an injective morphism $\mathrm{S}_{5} \rightarrow \mathrm{G}(\mathrm{P})$ without using the previous questions, but rather by contemplating the equality $\binom{5}{2}=10$ and the following figure :

Problem 2. (The Miller-Moreno theorem) A subgroup G will be called subcyclic if each strict ${ }^{2}$ subgroup of G is cyclic. Our aim is to prove the following theorem, due to Miller and Moreno: if G is a finite subcyclic group, then either G is isomorphic to one of the groups

$$
\mathbb{Z} / n \mathbb{Z} \quad(n \geq 1), \quad \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \quad(p \text { prime }), \mathrm{H}_{8}
$$

or we have $G \simeq \mathbb{Z} / p \mathbb{Z} \rtimes_{\alpha} \mathbb{Z} / q^{n} \mathbb{Z}$ with $n \geq 1, p$ and q prime with $q \mid p-1$, and a suitable α.

Part I : The case of abelian groups

(i) Briefly recall why cyclic groups are subcyclic.
(ii) Show that, for every prime p, the group $\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$ is subcyclic and not cyclic.
(iii) Show that if G is a non cyclic finite abelian group, there is a prime p such that G contains a subgroup isomorphic to $\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$.
(iv) Conclude the classification, up to isomorphisms, of finite abelian subcyclic groups.
2. A subgroup H of a group G is called strict if we have $H \neq G$.

Part II : Some properties of subabelian groups

A group G will be called subabelian if each strict subgroup of G is abelian.
(i) Let G be a subabelian group and H a normal subgroup of G. Show that both groups H and G / H are subabelian.
(ii) Show that every non trivial, finite abelian group, has a subgroup of prime index.
(iii) We admit that a finite, non abelian, subabelian group is not simple. ${ }^{3}$ Show that every finite, non trivial, subabelian group has a normal subgroup of prime index.

Our aim until the end of Part II is to show that if G is a finite, non abelian, subabelian group, there are two subgroups P and Q of G such that: (a) $G=P Q$, (b) P is normal in G and of order p^{m} with p prime and $m \geq 0$, and (c) Q has order q^{n} with q prime $\neq p$ and $n \geq 1$.
(iv) Let H be a finite abelian group and $n \geq 1$. Show that $H[n]=\left\{h \in H \mid h^{n}=1\right\}$ is a characteristic subgroup of H, and that each prime dividing $|H[n]|$ divides the integer n.
(v) (continuation) Assume $|H|=a b$ with a and b coprime, and set $A=H[a]$ and $B=H[b]$. Show $H=A B, A \cap B=\{1\}$, and then $|A|=a$ and $|B|=b$.
(vi) Let A and B be two finite subgroups of a group G with $A \triangleleft G$. Show that $A B$ is a subgroup of G whose order divides $|A||B|$.
(vii) Let G be a group and H a normal subgroup of G with prime index q. Show that there exists $z \in G$ whose order is a power of q and with $G=H\langle z\rangle$. (Hint : Consider the canonical morphism $G \rightarrow G / H)$.
(viii) (continuation) Assume furthermore that G is subabelian. Show that we have $G=H^{\prime} Q$ with H^{\prime} a normal abelian subgroup of G whose order is prime to q, and Q a subgroup of G with order q^{n} and $n \geq 1$.
(ix) Conclude.

Part III: The Miller-Moreno groups

In this part, we are interested in the finite, non abelian, subcyclic groups G such that $|G|$ is divisible by at least two distinct primes ("Miller-Moreno groups»). Let G be such a group.
(i) Show that there are elements x and y in G of respective orders p^{m} and q^{n}, with p, q distinct primes, $m, n \geq 1$ and $G=\langle x\rangle\langle y\rangle$, as well as $k \in \mathbb{Z}$ with $y x y^{-1}=x^{k}$ and $k \not \equiv 1 \bmod p^{m}$.
(ii) Show $x y^{q}=y^{q} x$ et $x^{p} y=y x^{p}$. For this, you may consider $\langle x\rangle\left\langle y^{q}\right\rangle$ and $\left\langle x^{p}\right\rangle\langle y\rangle$.
(iii) Deduce $k^{q} \equiv 1 \bmod p^{m}$ and $k \equiv 1 \bmod p^{m-1}$.
(iv) Show $m=1$ and $q \mid p-1$. We recall, for $r \in p \mathbb{Z}$, the congruence $(1+r)^{p} \equiv 1 \bmod p r$.
(v) Show that there is a group morphism $\alpha: \mathbb{Z} / q^{n} \mathbb{Z} \rightarrow$ Aut $\mathbb{Z} / p \mathbb{Z}$ sending $\overline{1}$ to $z \mapsto \bar{k} z$.
(vi) Conclude $G \simeq \mathbb{Z} / p \mathbb{Z} \rtimes_{\alpha} \mathbb{Z} / q^{n} \mathbb{Z}$.

[^1](vii) Conversely, show that for all primes p, q with $q \mid p-1$, and all $n \geq 1$, there is a morphism $\beta: \mathbb{Z} / q^{n} \mathbb{Z} \rightarrow$ Aut $\mathbb{Z} / p \mathbb{Z}$ such that the group $\mathbb{Z} / p \mathbb{Z} \rtimes_{\beta} \mathbb{Z} / q^{n} \mathbb{Z}$ is subcyclic and non abelian.

Partie IV : (Bonus) The case of p-Groups

We finally assume G is a subcyclic, non abelian, group of order p^{n}, with p prime and $n \geq 2$. We fix a normal subgroup $H=\langle x\rangle$ of G of order p^{n-1}, as well as $y \in G \backslash H$.
(i) Show $y^{p} \in\left\langle x^{p}\right\rangle$ and $y x^{p}=x^{p} y$.
(ii) Show $y x y^{-1}=x^{k}$ with $k \in \mathbb{Z}, k \equiv 1 \bmod p^{n-2}$ and $n \geq 3$.
(iii) Show that, up to replacing y with $x^{i} y$ for some $i \in \mathbb{Z}$ if necessary, we may assume $y^{2 p}=1$.
(iv) By considering the subgroup $\langle t, y\rangle$ of G with $t=x^{p^{n-2}}$, show $p=2$ and $y^{2}=t$.
(v) Conclude $G \simeq \mathrm{H}_{8}$, as well as the proof of the Miller-Moreno theorem.

[^0]: 1. Concretely, we have $\mathrm{A}=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}, \mathrm{B}=\{\{1,4\},\{2,4\},\{3,4\}\}, \mathrm{C}=$ $\{\{1,4\},\{2,4\},\{2,3\},\{3,4\}\}, \mathrm{D}=\{\{1,2\}\}$ and $\mathrm{E}=\{\{1,2\},\{3,4\}\}$.
[^1]: 3. This result, admitted here and in all the problem, was the subject of Problem 2 of the partial exam 2021-2022.
