No document allowed. Exam duration 2h. It is not necessary at all to answer all the questions to obtain the maximal score. All answers must be carefully justified.

Problem 1. Let $n \ge 1$ be an integer. By an n-graph we shall mean a subset $\Gamma \subset P(\{1, ..., n\})$ consisting of 2-element subsets of $\{1, ..., n\}$. Those subsets will also be called the edges of the graph Γ . For instance, the six figures below define¹ five 4-graphs (the last two being the same), in which the edges are represented by lines :

Let Γ be an n-graph. For $i \in \{1, ..., n\}$ we set $V_{\Gamma}(i) = \{j \in \{1, ..., n\} | \{i, j\} \in \Gamma\}$ (set of neighbors of i in Γ) and $v_{\Gamma}(i) = |V_{\Gamma}(i)|$. We finally define the symmetry group of Γ as

 $\mathbf{G}(\Gamma) := \{g \in \mathbf{S}_n \mid \forall i, j \in \{1, \dots, n\}, \ \{i, j\} \in \Gamma \implies \{g(i), g(j)\} \in \Gamma\}.$

- (i) Show that $G(\Gamma)$ is indeed a subgroup of S_n .
- (ii) Let $i \in \{1, \ldots, n\}$ and $g \in G(\Gamma)$. Show $g(V_{\Gamma}(i)) = V_{\Gamma}(g(i))$ and $v_{\Gamma}(i) = v_{\Gamma}(g(i))$.
- (iii) For each of the five 4-graphs Γ above, give without proof a group isomorphic to G(Γ) in the following list : 1, Z/2Z, Z/3Z, Z/4Z, Z/2Z × Z/2Z, S₃, D₈, H₈, S₄.
- (iv) (continuation) For two graphs Γ of your choice among those five, justify your answer. For this, you may first determine the map $v_{\Gamma} : \{1, 2, 3, 4\} \to \mathbb{N}$ and list all the elements of $G(\Gamma)$.

In the sequel, we are interested in the Petersen graph. This is the 10-graph P defined by $P = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{1, 5\}, \{6, 8\}, \{8, 10\}, \{7, 10\}, \{7, 9\}, \{6, 9\}, \{1, 6\}, \{2, 7\}, \{3, 8\}, \{4, 9\}, \{5, 10\}\}.$ The two following figures give two representations of P:

Our goal is to show $G(P) \simeq S_5$. As any subgroup of S_{10} , the group G(P) naturally acts on $\{1, \ldots, 10\}$. For $I \subset \{1, \ldots, n\}$ we set $G(P)_I = \{g \in G(P) \mid g(i) = i, \forall i \in I\}$.

(v) With the help of the figures above, give an order 3 element and an order 5 element in G(P).

^{1.} Concretely, we have A = {{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}}, B = {{1,4}, {2,4}, {3,4}}, C = {{1,4}, {2,3}, {3,4}}, D = {{1,2}} and E = {{1,2}, {3,4}}.

- (vi) Show that G(P) acts transitively on $\{1, \ldots, 10\}$.
- (vii) Show that $G(P)_{\{1,2,5,6\}}$ is generated by the element (37)(410)(89).
- (viii) Show that we have a short exact sequence $1 \to G(P)_{\{1,2,5,6\}} \to G(P)_{\{1\}} \to S_{\{2,5,6\}} \to 1$.
 - (*ix*) *Prove* |G(P)| = 120.

A tetrad of P is a 4-element subset $T \subset \{1, 2, ..., 10\}$ such that $\forall i, j \in T$, $\{i, j\} \notin P$ (in other words, T does not contain any pair of neighbors in P).

- (x) Show that there are exactly two tetrads containing 1, say T and T', as well as $T \cap T' = \{1\}$.
- (xi) Show that P contains exactly 5 tetrads.
- (xii) Show that there is an injective group morphism $G(P) \longrightarrow S_5$.
- (xiii) Conclude.
- (xiv) Prove the existence of an injective morphism $S_5 \to G(P)$ without using the previous questions, but rather by contemplating the equality $\binom{5}{2} = 10$ and the following figure :

Problem 2. (The Miller-Moreno theorem) A subgroup G will be called subcyclic if each strict² subgroup of G is cyclic. Our aim is to prove the following theorem, due to Miller and Moreno : if G is a finite subcyclic group, then either G is isomorphic to one of the groups

 $\mathbb{Z}/n\mathbb{Z}$ $(n \geq 1)$, $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ (p prime), H_8 ,

or we have $G \simeq \mathbb{Z}/p\mathbb{Z} \rtimes_{\alpha} \mathbb{Z}/q^n\mathbb{Z}$ with $n \ge 1$, p and q prime with $q \mid p-1$, and a suitable α .

PART I : THE CASE OF ABELIAN GROUPS

- (i) Briefly recall why cyclic groups are subcyclic.
- (ii) Show that, for every prime p, the group $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ is subcyclic and not cyclic.
- (iii) Show that if G is a non cyclic finite abelian group, there is a prime p such that G contains a subgroup isomorphic to $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.
- (iv) Conclude the classification, up to isomorphisms, of finite abelian subcyclic groups.

^{2.} A subgroup H of a group G is called strict if we have $H \neq G$.

PART II : SOME PROPERTIES OF SUBABELIAN GROUPS

A group G will be called subabelian if each strict subgroup of G is abelian.

- (i) Let G be a subabelian group and H a normal subgroup of G. Show that both groups H and G/H are subabelian.
- (ii) Show that every non trivial, finite abelian group, has a subgroup of prime index.
- (iii) We admit that a finite, non abelian, subabelian group is not simple.³ Show that every finite, non trivial, subabelian group has a normal subgroup of prime index.

Our aim until the end of Part II is to show that if G is a finite, non abelian, subabelian group, there are two subgroups P and Q of G such that : (a) G = PQ, (b) P is normal in G and of order p^m with p prime and $m \ge 0$, and (c) Q has order q^n with q prime $\ne p$ and $n \ge 1$.

- (iv) Let H be a finite abelian group and $n \ge 1$. Show that $H[n] = \{h \in H \mid h^n = 1\}$ is a characteristic subgroup of H, and that each prime dividing |H[n]| divides the integer n.
- (v) (continuation) Assume |H| = ab with a and b coprime, and set A = H[a] and B = H[b]. Show H = AB, $A \cap B = \{1\}$, and then |A| = a and |B| = b.
- (vi) Let A and B be two finite subgroups of a group G with $A \triangleleft G$. Show that AB is a subgroup of G whose order divides |A| |B|.
- (vii) Let G be a group and H a normal subgroup of G with prime index q. Show that there exists $z \in G$ whose order is a power of q and with $G = H\langle z \rangle$. (Hint : Consider the canonical morphism $G \to G/H$).
- (viii) (continuation) Assume furthermore that G is subabelian. Show that we have G = H'Q with H' a normal abelian subgroup of G whose order is prime to q, and Q a subgroup of G with order q^n and $n \ge 1$.
 - (ix) Conclude.

PART III : THE MILLER-MORENO GROUPS

In this part, we are interested in the finite, non abelian, subcyclic groups G such that |G| is divisible by at least two distinct primes (« Miller-Moreno groups »). Let G be such a group.

- (i) Show that there are elements x and y in G of respective orders p^m and q^n , with p, q distinct primes, $m, n \ge 1$ and $G = \langle x \rangle \langle y \rangle$, as well as $k \in \mathbb{Z}$ with $yxy^{-1} = x^k$ and $k \not\equiv 1 \mod p^m$.
- (ii) Show $x y^q = y^q x$ et $x^p y = y x^p$. For this, you may consider $\langle x \rangle \langle y^q \rangle$ and $\langle x^p \rangle \langle y \rangle$.
- (iii) Deduce $k^q \equiv 1 \mod p^m$ and $k \equiv 1 \mod p^{m-1}$.
- (iv) Show m = 1 and $q \mid p 1$. We recall, for $r \in p\mathbb{Z}$, the congruence $(1 + r)^p \equiv 1 \mod pr$.
- (v) Show that there is a group morphism $\alpha : \mathbb{Z}/q^n\mathbb{Z} \to \operatorname{Aut} \mathbb{Z}/p\mathbb{Z}$ sending $\overline{1}$ to $z \mapsto \overline{k}z$.
- (vi) Conclude $G \simeq \mathbb{Z}/p\mathbb{Z} \rtimes_{\alpha} \mathbb{Z}/q^n\mathbb{Z}$.

^{3.} This result, admitted here and in all the problem, was the subject of Problem 2 of the partial exam 2021-2022.

(vii) Conversely, show that for all primes p, q with q | p - 1, and all $n \ge 1$, there is a morphism $\beta : \mathbb{Z}/q^n\mathbb{Z} \to \operatorname{Aut} \mathbb{Z}/p\mathbb{Z}$ such that the group $\mathbb{Z}/p\mathbb{Z} \rtimes_{\beta} \mathbb{Z}/q^n\mathbb{Z}$ is subcyclic and non abelian.

PARTIE IV : (BONUS) THE CASE OF p-GROUPS

We finally assume G is a subcyclic, non abelian, group of order p^n , with p prime and $n \ge 2$. We fix a normal subgroup $H = \langle x \rangle$ of G of order p^{n-1} , as well as $y \in G \setminus H$.

- (i) Show $y^p \in \langle x^p \rangle$ and $y x^p = x^p y$.
- (ii) Show $yxy^{-1} = x^k$ with $k \in \mathbb{Z}$, $k \equiv 1 \mod p^{n-2}$ and $n \geq 3$.
- (iii) Show that, up to replacing y with $x^i y$ for some $i \in \mathbb{Z}$ if necessary, we may assume $y^{2p} = 1$.
- (iv) By considering the subgroup $\langle t, y \rangle$ of G with $t = x^{p^{n-2}}$, show p = 2 and $y^2 = t$.
- (v) Conclude $G \simeq H_8$, as well as the proof of the Miller-Moreno theorem.