
Algebra exam, ENS Ulm, January 16, 2024

No document allowed. Exam duration 3h. It is not necessary to answer all the questions to obtain the maximal
score. All answers must be carefully justified.

Problème 1. (Black and white dodecahedra) Let D be a regular dodecahedron. Our aim is to determine
the number of ways to color the faces of D in black or white, assuming that two such colorings are identified
if they can be deduced from each other by a rotation of D.

(i) Determine the number of 3-cycles, double-transpositions, and 5-cycles, in A5.

Let G be a group acting on a finite set X, and let E be a finite set of cardinality m. For g ∈ G and
φ : X → E, we define g.φ : X → E by the formula (g.φ)(x) = φ(g−1x).

(ii) Check that (g, φ) 7→ g.φ is an action of G on the set EX .

(iii) Let g ∈ G. Show that the number of fixed points of g in EX is of the form mrX(g), where rX(g) is
an integer to be expressed in terms of the type of the cycle decomposition of g on X.

From now on, we assume that G is the group of proper isometries of a regular dodecahedron, and that X
is the set of 12 faces of this dodecahedron, equipped with its natural action of G.

(iv) Assume that g ∈ Gr {1} has a fixed point in X. Briefly explain why g has order 5 and exactly two
fixed points in X.

(v) Deduce that the action of G on EX has exactly 1
60
(m12 + 15m6 + 44m4) orbits.

(vi) Conclude.

Problème 2. (Self-transitive groups and Rotman’s simplicity criterion) We start with a preliminary
question. Let G be a group acting k-transitively 1 on a set X, with k ≥ 2, and let x ∈ X.

(o) Check that Gx acts (k − 1)-transitively on X r {x}.

Part I : Self-transitive groups

We are interested in the finite groups G such that the natural action of the group AutG on the set
Gr {1}, (α, g) 7→ α(g), is transitive. In questions (i) to (iii) we fix such a group G 6= {1}, and choose a
prime p dividing |G|.

1. Remember that our convention is that if a group acts k-transitively on a set X, then we have |X| ≥ k.
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(i) Show that any non-trivial element of G has order p.

(ii) Show Z(G) = G.

(iii) Deduce that we have G ' (Z/pZ)n for some n ≥ 1.

(iv) Conversely, prove that for p prime and n ≥ 1, the group (Z/pZ)n has the required property.

We finally fix an integer k ≥ 2 and a finite group G such that the natural action of AutG on Gr {1} is
k-transitive.

(v) Assume k = 2. Show that we either have G ' Z/3Z, or G ' (Z/2Z)n and n ≥ 2.

(vi) Assume k ≥ 3. Show k = 3 and G ' Z/2Z× Z/2Z.

Part II : Rotman’s simplicity criterion

Let G be a finite group acting faithfully and k-transitively on a finite set X, with k ≥ 2. Suppose there
exists x ∈ X such that the group Gx is simple. Following J. Rotman, our aim is to show that one of the
following assertions is satisfied :

(a) G is simple,

(b) we have k = 3 and, either |X| = 3 and G = SX , or |X| is a power of 2,

(c) we have k = 2 and |X| is a prime power.

We fix x0 ∈ X such that Gx0 is simple. Let N be a normal subgroup of G with N 6= {1} and N 6= G.

(i) Show that N acts transitively X. Hint : consider x ∈ X with |Nx| > 1 and show X = Nx.

(ii) Prove N ∩Gx0 = {1}.

(iii) Check that the map N r {1} −→ X r {x0}, n 7→ nx0, is well-defined and bijective.

(iv) Deduce that the conjugacy action of Gx0 on N r {1} is (k − 1)-transitive.

(v) Conclude the proof of Rotman’s criterion.

Part III : two applications of Rotman’s criterion

(i) Prove that the simplicity of A5 implies that of An for n ≥ 6.

É. Mathieu has constructed a subgroup G of S24 acting 5-transitively on {1, 2, . . . , 24} and verifying G1 ∩
G2 ∩ G3 ' PSL3(F4), where Gi denotes the stabilizer in G of the element i ∈ {1, 2, . . . , 24} and F4 is a
field with 4 elements. We denote respectively by M24, M23 and M22 the groups G, G1 and G1 ∩G2.

(ii) Show that M22, M23 and M24 are simple. 2

2. These are the three largest sporadic simple groups discovered by Mathieu.
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Let K be a field, V a finite-dimensional K-vector space and u an endomorphism of V . Recall that Vu
denotes the K[X]-module with underlying K-vector space V and Xv = u(v) for all v ∈ V . We denote by
tu the endomorphism of the dual V ∗ of V defined by tu(ϕ) = ϕ ◦ u for all ϕ ∈ V ∗ (transpose of u).

Problème 3. (Duality, and non-isomorphic actions with isomorphic permutation representations) Let K
be a field, V a K-vector space of finite dimension n ≥ 1, and u an endomorphism of V . Our first aim is
to show that the K[X]-modules Vu and (V ∗)tu are isomorphic.

(i) Assume that the K[X]-module Vu is isomorphic to K[X]/(P ) with P ∈ K[X] monic. Show that
there exists v ∈ V such that v,Xv,X2v, . . . , Xn−1v is a basis of V , and with Pv = 0.

(ii) (continued) Show that the K[X]-module (V ∗)tu is monogenic, as well as Pψ = 0 for all ψ ∈ V ∗.
Hint : consider a linear form φ on V satisfying φ(X iv) = 0 for 0 ≤ i < n− 1, and φ(Xn−1v) = 1.

(iii) (continued) Deduce that there is an isomorphism of K[X]-modules (V ∗)tu ' K[X]/(P ).

(iv) Assume V = ⊕r
i=1Vi with Vi ⊂ V a sub-vector space stable by u for i = 1, . . . , r, and set ui = u|Vi

.
Check that there is a K[X]-module isomorphism ⊕r

i=1(V
∗
i )tui

' (V ∗)tu.

(v) Conclude.

(vi) (Application) Show that any matrix in Mn(K) is conjugate to its transpose.

We now assume that K is a finite field. We denote by X the set of lines in the vector space Kn and by Y
that of hyperplanes in Kn. Those two sets are equipped with natural actions of the group G = GLn(K).

(vii) Show that each g ∈ G has the same number of fixed points in X and in Y .

(viii) Deduce that the C[G]-modules CX et CY are isomorphic.

(ix) Nevertheless, show that the actions of G on X and on Y are not isomorphic for n ≥ 3.

Problème 4. (Groups of the year) Our aim is to show that, up to isomorphism, there are exactly 6 groups
of order 2024 = 23 · 11 · 23 and with an element of order 8. Let 3 G be a group of order 2024.

(i) Show that G has a unique normal subgroup V of order 23.

(ii) Show that G has a subgroup Q of order 88, as well as G = V oQ.

(iii) Show that Q has a unique normal subgroup O of order 11.

(iv) Deduce that we have Q = O oH for any 2-Sylow subgroup H of Q.

(v) Show that AutO is cyclic of order 10, and has a unique order 2 element, namely x 7→ x−1. Show
that the group AutV has exactly 4 subgroups, which are cyclic and respectively generated by the
automorphisms v 7→ vi with i ∈ {1,−1, 2,−2}. We give the congruence 211 ≡ 1 mod 23.

We finally assume that G has an element of order 8, and we fix a 2-Sylow subgroup H of Q.

(vi) Show H ' Z/8Z.

3. We apologize for using the letter V for the french Vingt-trois, Q for Quatre-vingt-huit, O for Onze and H for Huit.
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In the sequel, we fix a generator h of H.

(vii) Considering a suitable group morphism H → AutO, show that either Q is abelian, or we have
hxh−1 = x−1 for all x ∈ O.

(viii) Show that if Q is abelian, then Q is cyclic.

(ix) Assume Q is cyclic. Show that there is a generator g of Q, as well as i ∈ {1,−1, 2,−2}, such that
for all v ∈ V we have gvg−1 = vi.

(x) Assume Q is not cyclic. Show that there is i ∈ {1,−1} such that for all v ∈ V , and all x ∈ O, we
have hvh−1 = vi and xvx−1 = v.

(xi) Conclude.


