Problème 1. (Sommes de carrés, suivant Hurwitz et Eckmann) On se propose de démontrer, que si l'on a une identité remarquable dans $\mathbb{R}[x_1,\ldots,x_n,y_1,\ldots,y_n]$ de la forme

$$(x_1^2 + x_2^2 + \dots + x_n^2)(y_1^2 + y_2^2 + \dots + y_n^2) = z_1^2 + z_2^2 + \dots + z_n^2,$$

où les z_k sont combinaisons \mathbb{R} -linéaires des $x_i y_j$, alors on a n=1,2,4 ou 8 (Théorème de Hurwitz).

Partie 1

Soient m, n des entiers > 1 avec m impair, ainsi que g_1, \ldots, g_m des éléments de $GL_n(\mathbb{C})$ vérifiant ¹

(*)
$$g_i^2 = -1_n$$
 pour tout i , et $g_i g_j = -g_j g_i$ pour tout $i \neq j$.

On se propose dans cette partie de démontrer la congruence $n \equiv 0 \mod 2^{\frac{m-1}{2}}$. Pour cela, on note G le sous-groupe de $\operatorname{GL}_n(\mathbb{C})$ engendré par les g_i , avec $i=1,\ldots,m$. Nous allons commencer par déterminer |G|, le centre Z de G, ainsi que le groupe dérivé $\operatorname{D}(G)$ de G. Pour $I \subset \{1,\ldots,m\}$, disons $I=\{i_1,\ldots,i_k\}$ avec $i_1 < i_2 < \cdots < i_k$, on pose $g_I = g_{i_1}g_{i_2}\ldots g_{i_k} \in G$, avec la convention $g_\emptyset = 1_n$. On pose enfin $\eta = g_{\{1,\ldots,m\}} = g_1g_2\cdots g_m \in G$. On écrira « $a = \pm b$ » pour « a = b ou a = -b ».

- (i) Donner un exemple d'éléments g_1, g_2, g_3 (cas m = 3) satisfaisant les relations (*) pour n = 2.
 - On pose $g_1 = I$, $g_2 = J$ et $g_3 = K$ (quaternions). On a $G = H_8$, $\eta = IJK = -1_2$ et $n = 2^{\frac{m-1}{2}}$.
- (ii) Soient $I, J \subset \{1, ..., m\}$, justifier brièvement l'égalité $g_I g_J = \pm g_K$ avec $K = (I \cup J) \setminus (I \cap J)$. En utilisant les relations données, on constate que l'on a $g_I g_i = \pm g_{I'}$ avec $I' = I \setminus \{i\}$ ou $J = I \cup \{i\}$, selon que l'on a $i \in I$ ou non. La formule de l'énoncé pour $g_I g_J$ s'en déduit par récurrence sur |J|.
- (iii) En déduire $G = \{\pm g_I \mid I \subset \{1, ..., m\}\}$ et $g^2 = \pm 1_n$ pour tout $g \in G$. Le (ii) montre $g_I^2 = \pm 1_n$ pour J = I, donc $g_I^{-1} = \pm g_I$, puis que $X = \{\pm g_I\}$ est un sous-groupe

Le (ii) montre $g_I^2 = \pm 1_n$ pour J = I, donc $g_I^{-1} = \pm g_I$, puis que $X = \{\pm g_I\}$ est un sous-groupe de G contenant les g_i : c'est donc G.

- (iv) Soit $I \subset \{1, ..., m\}$. Montrer que l'on a $g_i g_I g_i^{-1} = (-1)^{|I|} \epsilon g_I$ avec $\epsilon = 1$ si $i \notin I$, et $\epsilon = -1$ sinon. On a $g_i(g_{i_1} \cdots g_{i_k}) g_i^{-1} = (g_i g_{i_1} g_i^{-1}) (g_i g_{i_2} g_i^{-1}) \cdots (g_i g_{i_k} g_i^{-1})$. On conclut car pour tout $1 \le s \le k$ on a $g_i g_{i_s} g_i^{-1} = -g_{i_s}$ si $i \ne i_s$, $+g_i$ sinon.
- (v) (suite) En déduire que si $g = \pm g_I$, la classe de conjugaison de g dans G est $\{g, -g\}$, sauf si |I| = 0 ou |I| = m, auquel cas on a $g \in Z$.

On a clairement $\pm 1_n = \pm g_\emptyset \in Z$. Comme m est impair, le (iv) montre que pour tout i = 1, ..., m on a $g_i \eta = (-1)^{m-1} \eta g_i = \eta g_i$. On a donc aussi $\pm \eta \in Z$. Supposons maintenant 0 < |I| < m. Le (iv) montre que $g_i g g_i^{-1} = \pm g$, avec des signes opposés selon que l'on choisit i dans I ou non. Les deux cas se produisent comme 0 < |I| < m. On en déduit que la classe de conjugaison de g contient $\pm g$. Mais en itérant le (iv) on a $g_J g g_J^{-1} = \pm g$ pour tout J, donc cette classe de conjugaison est exactement $\{g, -g\}$.

^{1.} Bien entendu, 1_n désigne ici la matrice identité de $M_n(\mathbb{C})$.

- (vi) Montrer $Z = \{\pm 1_n, \pm \eta\}$, puis |Z| = 2 ou |Z| = 4, selon que l'on a $\eta = \pm 1_n$ ou non. La question précédente et (iii) montrent $Z = \{\pm 1_n, \pm \eta\}$. On a clairement |Z| = 2 si $\eta = \pm 1_n$. Sinon, les 4 éléments $\pm 1_n, \pm \eta$ sont distincts, et donc |Z| = 4.
- (vii) Montrer $|G| = 2^{m-1}|Z|$. On pourra montrer que tout élément de G s'écrit de manière unique sous la forme zg_I avec $z \in Z$ et $I \subset \{1, \ldots, m-1\}$.

Pour l'existence, il suffit d'observer que si $g = \pm g_I$ avec $I \subset \{1, \ldots, m\}$ et $m \in I$, alors $\eta g = \pm g_{I'}$ avec $I' \subset \{1, \ldots, m-1\}$ par le (ii), puis $g = \pm \eta g_{I'}$. Montrons l'unicité. Supposons $zg_I = z'g_J$ avec $z, z' \in Z$ et $I, J \subset \{1, \ldots, m-1\}$. On a alors $z^{-1}z' = g_Jg_I^{-1} \in Z$. Mais $g_Jg_I^{-1} = \pm g_Jg_I$ est de la forme $\pm g_K$ avec $K = (I \cup J) \setminus (I \cap J)$. Le (iv) montre donc que l'on a $K = \{1, \ldots, m\}$ ou $K = \emptyset$. Le premier cas est impossible car on a $m \notin K$. On a donc $K = \emptyset$, i.e. I = J, puis z = z'.

(viii) Montrer que G a exactement $|Z| + \frac{|G| - |Z|}{2} = 2^{m-2}|Z| + \frac{|Z|}{2}$ classes de conjugaison.

Tout élément $h \in Z$ est sa propre classe de conjugaison : on a $ghg^{-1} = h$ pour tout $g \in G$. Et si $\pm h$ n'est pas dans Z on a vu au (iv) que sa classe de conjugaison est $\{h, -h\}$. Le nombre total de classes de conjugaison est donc bien $|Z| + \frac{|G| - |Z|}{2} = \frac{|Z|}{2} + \frac{|G|}{2}$. On conclut car on a vu $|G| = 2^{m-1}|Z|$.

(ix) Montrer $D(G) = \{\pm 1_n\}$.

On $a-1_n=g_1g_2g_1^{-1}g_2^{-1}$ (on utilise ici m>1) donc -1_n est dans D(G). Soit $g=\pm g_I$ et $h\in G$. Par le (v) on a $hgh^{-1}=\pm g$, et donc $[h,g]=\pm 1_n$. On a bien montré $D(G)=\{\pm 1_n\}$.

(x) En déduire qu'il existe exactement $|G|/2 = 2^{m-2}|Z|$ morphismes de groupes $G \to \mathbb{C}^{\times}$.

Tout morphisme de groupes $G \to \mathbb{C}^{\times}$ est trivial sur D(G) car \mathbb{C}^{\times} est abélien. Par la propriété universelle du quotient, c'est la même chose de se donner un morphisme de groupes $G \to \mathbb{C}^{\times}$ et un morphisme de groupes $G/D(G) \to \mathbb{C}^{\times}$. Mais G/D(G) est abélien, donc il a exactement |G/D(G)| tels morphismes, par un théorème du cours. On conclut car on a |G/D(G)| = |G|/2.

- (xi) Montrer que l'unique solution de l'équation $2^m = a^2 + b^2$ avec a, b entiers ≥ 1 est $a = b = 2^{\frac{m-1}{2}}$. Si on a $2^m = a^2 + b^2$ avec m impair, on a a et b pairs par réduction modulo a, puis a = 2a', a = 2b' et a = 2b'
- (xii) Montrer qu'à isomorphisme près, G possède |Z|/2 représentations \mathbb{C} -linéaires irréductibles de dimension > 1, et qu'elles sont de dimension $2^{\frac{m-1}{2}}$ (on traitera d'abord le cas |Z| = 2).

Supposons d'abord |Z|=2 comme indiqué. On a alors $|G|=2^m$ par (vii) et G possède $2^{m-1}+1$ classes de conjugaison par (viii). D'après Frobenius, on sait que G possède $2^{m-1}+1$ représentations \mathbb{C} -linéaires irréductibles non isomorphes. Par le (x), il y en a 2^{m-1} de degré 1. Il n'en reste donc qu'une seule, disons de degré d (en fait, avec d>1). Mais toujours par Frobenius, on sait que la somme des carrés des degrés des dimensions irréductibles vaut |G|. On a donc $|G|=2^m=2^{m-1}\cdot 1^2+d^2$, puis $d=2^{(m-1)/2}$.

Supposons maintenant |Z|=4. On a cette fois-ci $|G|=2^{m+1}$ par (vii), G a 2^m+2 représentations irréductibles non isomorphes par (viii), dont 2^m de degré 1 par (x), il en reste donc 2 de degré a,b>1 à déterminer. Mais on a $2^{m+1}=2^m.1^2+a^2+b^2+1^2$, et donc $a^2+b^2=2^m$, puis $a=b=2^{\frac{m-1}{2}}$ par le (xi).

^{2.} En fait, les deux cas peuvent se produire en général, donc on n'essaiera pas de monter qu'on est dans un cas où l'autre.

(xiii) Montrer que la représentation naturelle de G sur \mathbb{C}^n n'a aucune droite G-stable.

Soit $D \subset \mathbb{C}^n$ une droite G-stable. Soit $\lambda_i \in \mathbb{C}^\times$ la valeurs propre de $g_i \in GL_n(\mathbb{C})$ sur la droite de D. La relation $g_ig_j = -g_jg_i$ pour $i \neq j$ (et deux tels indices existent car m > 1) montre $\lambda_i\lambda_j = -\lambda_j\lambda_i$, ce qui est absurde dans \mathbb{C}^\times .

(xiv) Montrer que l'on a $2^{\frac{m-1}{2}} \mid n$.

D'après Maschke, il existe une décomposition $\mathbb{C}^n = \bigoplus_{k=1}^s U_k$ où les U_k sont des sous-espaces vectoriels de \mathbb{C}^n qui sont G-stables et irréductibles comme représentation de G. On a dim $U_k > 1$ pour tout k par le (xi), et donc dim $U_k \equiv 0 \mod 2^{\frac{m-1}{2}}$ par le (xii). On en déduit que $n = \dim \mathbb{C}^n = \sum_k \dim U_k$ est multiple de $2^{\frac{m-1}{2}}$.

Partie 2

Soit E un espace euclidien de dimension n > 1, de norme euclidienne notée ||.||. On suppose qu'il existe une application \mathbb{R} -bilinéaire $E \times E \to E$, $(x,y) \mapsto x \star y$, telle que pour tout $x,y \in E$ on ait

$$||x \star y||^2 = ||x||^2 ||y||^2.$$

On se propose de montrer que l'on a n=2,4 ou 8. On fixe une base orthonormée $\varepsilon_1,\ldots,\varepsilon_n$ de E.

- (i) Donner un exemple pour n=2 et n=4. (Bonus : une idée dans le cas n=8?)
 - Pour n=2, on peut prendre $E=\mathbb{C}$ muni de sa norme euclidienne $z\mapsto |z|^2$ et \star la multiplication usuelle dans \mathbb{C} . Pour n=4, on peut prendre $E=\mathbb{H}$ muni de sa norme n, et \star la multiplication sur les quaternions (l'hypothèse est satisfaite par multiplicativité de la norme). Pour n=8, il faudrait considérer les octonions de Cayley et Graves, dont la norme est aussi euclidienne et multiplicative.
- (ii) Pour $x \in E$ on note $m_x : E \to E$ l'application linéaire $y \mapsto x \star y$, et $M(x) \in M_n(\mathbb{R})$ la matrice de m_x dans la base des ε_i . Montrer ${}^tM(x)M(x) = ||x||^2 1_n$ pour tout $x \in E$.

C'est clair pour x=0 donc on suppose $x\neq 0$. Par hypothèse, m_x est une similitude orthogonale de rapport $||x||^2$, ce qui conclut. On peut aussi dire que si ||x||=1 alors on a $m_x\in O(E)$, donc $M(x)\in O(n)$. Pour $||x||=\lambda>0$, on a $m_{x/\lambda}=\frac{1}{\lambda}m_x$ par bilinéarité de \star , et donc $\frac{1}{||x||}M(x)\in O(n)$.

- $\mbox{(iii) En d\'eduire } M(\varepsilon_i) \, \in \, \mathrm{O}(n) \ \ et \ \ ^t \mathrm{M}(\varepsilon_i) \mathrm{M}(\varepsilon_j) \, + \, ^t \mathrm{M}(\varepsilon_j) \mathrm{M}(\varepsilon_i) \, = 0 \ \ pour \ i \neq j.$
 - On a $||\varepsilon_i|| = 1$ donc $M(\varepsilon_i) \in O(n)$ par la question précédente. Pour $x = \varepsilon_i + \varepsilon_j$ avec $i \neq j$, on a $||x||^2 = 2$, mais aussi $M(\varepsilon_i + \varepsilon_j) = M(\varepsilon_i) + M(\varepsilon_i)$ par linéarité de $x \mapsto m_x$. En appliquant la question précédente à $\varepsilon_i, \varepsilon_j$ et $\varepsilon_i + \varepsilon_j$, on trouve la formule annoncée.
- (iv) On pose $g_i = M(\varepsilon_i)^t M(\varepsilon_n) \in O(n)$. Vérifier, pour tout $1 \le i \ne j \le n-1$, les relations $g_i^2 = -1_n$ et $g_i g_j = -g_j g_i$.

C'est un calcul direct à partir de la question précédente : pour i, j < n on a

- $$\begin{split} g_i g_j &= \mathcal{M}(\varepsilon_i)^{\,\mathrm{t}} \mathcal{M}(\varepsilon_n) \mathcal{M}(\varepsilon_j)^{\,\mathrm{t}} \mathcal{M}(\varepsilon_n) = -\mathcal{M}(\varepsilon_i)^{\,\mathrm{t}} \mathcal{M}(\varepsilon_j) \mathcal{M}(\varepsilon_n)^{\,\mathrm{t}} \mathcal{M}(\varepsilon_n) = -\mathcal{M}(\varepsilon_i)^{\,\mathrm{t}} \mathcal{M}(\varepsilon_j) = -\mathcal{M}(\varepsilon_i) \mathcal{M}(\varepsilon_j)^{-1}. \\ &On \ a \ donc \ g_i^2 = -1_n. \ Pour \ i \neq j, \ on \ a \ par \ le \ (iii) \ l'égalité \ \mathcal{M}(\varepsilon_i)^{-1} \mathcal{M}(\varepsilon_j) = -\mathcal{M}(\varepsilon_j)^{-1} \mathcal{M}(\varepsilon_i), \ qui \\ &s'écrit \ aussi \ \mathcal{M}(\varepsilon_j) \mathcal{M}(\varepsilon_i)^{-1} = -\mathcal{M}(\varepsilon_i) \mathcal{M}(\varepsilon_j)^{-1}, \ et \ donc \ g_i g_j = -g_j g_i. \end{split}$$
- (v) Montrer que n est pair.

On a
$$g_i^2 = -1_n$$
 avec $g_i \in O_n(\mathbb{R})$. On en déduit $1 = (\det g_i)^2 = (-1)^n$, puis n pair.

(vi) Conclure, et expliquer pourquoi nous avons bien résolu la question initiale!

On peut supposer n > 2. On est dans la situation de la Partie 1 avec m = n-1, qui est impair par la question (v). On en déduit que $2^{\frac{n-2}{2}}$ divise n, et en particulier l'inégalité $2^{\frac{n}{2}} \le 2n$. On a égalité pour n = 8, mais la suite $x_n = 2^{\frac{n}{2}}$ croît plus vite que $y_n = 2n$ pour $n \ge 8$: on a $x_{n+1}/x_n = \sqrt{2}$ et $y_{n+1}/y_n \le 1 + 1/8 < \sqrt{2}$. On a donc $n \le 8$. Le cas n = 6 est exclus car $2^2 = 4$ ne divise pas 6.

On a bien répondu à la question initiale : si on a $z_k \in \mathbb{R}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ pour $k = 1, \ldots, n$ comme dans la partie 1, la formule $(x_i) \star (y_i) = (z_k(x_1, \ldots, x_n, y_1, \ldots, y_n))$ définie une loi de composition sur l'espace euclidien standard \mathbb{R}^n . Elle est \mathbb{R} -bilinéaire car les z_k ne contiennent que des monômes de la forme $x_i y_j$, et elle vérifie $||x \star y||^2 = ||x||^2 ||y||^2$ par l'identité remarquable.

Problème 2. (Une caractérisation de $PGL_2(\mathbb{Z}/p\mathbb{Z})$, suivant Zassenhaus)

Soit p un nombre premier. Un théorème de Zassenhauss affirme que si G est un sous-groupe d'ordre $p^3 - p = p(p-1)(p+1)$ de S_{p+1} agissant transitivement sur $\{1, 2, ..., p+1\}$, alors G est isomorphe au groupe $PGL_2(\mathbb{Z}/p\mathbb{Z})$. Dans la première partie, on se propose de démontrer ce résultat sous l'hypothèse supplémentaire $p \equiv 3 \mod 4$. Dans la seconde partie, indépendante, nous en donnons une application.

Partie 1

On considère l'ensemble $X = \mathbb{Z}/p\mathbb{Z} \coprod \{\infty\}$, qui a p+1 éléments. On rappelle que le groupe $\operatorname{PGL}_2(\mathbb{Z}/p\mathbb{Z})$ s'identifie naturellement au sous-groupe $\mathfrak{H}_X \subset \operatorname{S}_X$ des homographies de X, c'est-à-dire des bijections de X de la forme

 $x \mapsto \frac{ax+b}{cx+d}$, avec $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$.

On note aussi $\operatorname{Aff}_X \subset \mathcal{H}_X$ le sous-groupe des homographies g telles que $g(\infty) = \infty$, i.e. de la forme g(x) = ax + b, avec $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ et $b \in \mathbb{Z}/p\mathbb{Z}$ (homographies « affines »).

(i) Rappeler pourquoi on a $|PGL_2(\mathbb{Z}/p\mathbb{Z})| = p^3 - p$.

Comme on l'a vu en cours, le nombre de bases du $\mathbb{Z}/p\mathbb{Z}$ -espace vectoriel $(\mathbb{Z}/p\mathbb{Z})^2$ est $|GL_2(\mathbb{Z}/p\mathbb{Z})| = (p^2 - 1)(p^2 - p)$. On conclut car $PGL_2(\mathbb{Z}/p\mathbb{Z})$ est par définition le quotient du groupe $GL_2(\mathbb{Z}/p\mathbb{Z})$ par son centre $(\mathbb{Z}/p\mathbb{Z})^{\times}$, d'ordre p - 1.

(ii) Montrer que \mathcal{H}_X est engendré par l'homographie $x\mapsto 1/x$ et son sous-groupe Aff_X .

Soit H le sous-groupe de \mathcal{H}_X engendré par Aff_X et l'homographie g(x)=1/x. Soit $f\in\mathcal{H}_X$. Si on a $f(\infty)=\infty$ alors $f\in\mathrm{Aff}_X\subset H$. Sinon, on a $f(\infty)=k$ avec $k\in\mathbb{Z}/p\mathbb{Z}$. Soit $t\in\mathrm{Aff}_X$ l'homographie t(x)=x-k. Alors $g\,t\,f$ envoie ∞ sur ∞ , et donc $g\,t\,f\in H$, puis $t\,f\in H$ car $g^{-1}\in H$, puis $f\in H$ car $t^{-1}\in H$.

(iii) Montrer que Aff_X agit 2-transitivement sur $\mathbb{Z}/p\mathbb{Z}$.

(Rappel: Un groupe G agit k-transitivement sur un ensemble X si on a $|X| \ge k$ et si G agit transitivement sur l'ensemble Y des k-uples de la forme $(x_1, x_2, ..., x_k)$, où les x_i sont distincts et dans X. Il suffit de montrer que la G-orbite d'un k-uple donné est tout Y.) On a bien $|\mathbb{Z}/p\mathbb{Z}| = p \ge 2$. Pour montrer la 2-transitivité de Aff_X sur $\mathbb{Z}/p\mathbb{Z}$, il suffit donc de voir que si u et v sont deux éléments distincts de $\mathbb{Z}/p\mathbb{Z}$, il existe $h \in Aff_X$ tel que h(0) = u et h(1) = v. Mais h(x) := (v-u)x+u convient.

^{3.} Cet ensemble est aussi noté $\widehat{\mathbb{Z}/p\mathbb{Z}}$ dans le cours, où on l'a identifié à la droite projective $P^1(\mathbb{Z}/p\mathbb{Z})$.

Soit G un sous-groupe de S_X de cardinal $p^3 - p$ et agissant transitivement sur X. On veut montrer qu'il existe $\sigma \in S_X$ tel que $\sigma G \sigma^{-1} = \mathcal{H}_X$. On note $\alpha \in \mathrm{Aff}_X$ la translation $x \mapsto x + 1$.

(iv) Montrer que G possède un p-cycle.

On a $p \mid |G|$, donc G possède un élément g d'ordre p par Cauchy. On sait que l'ordre d'une permutation dans un groupe symétrique est le ppcm des longueurs de ses cycles. Ainsi, une permutation d'ordre premier p est un produit de p-cycles à supports disjoints. Comme on a |X| = p + 1 < 2p, la seule possibilité est que g soit un p-cycle.

(v) En déduire qu'il existe $\sigma \in S_X$ tel que $\sigma G \sigma^{-1}$ contient α , puis que l'on peut supposer $\alpha \in G$.

On constate que α est le p-cycle $(0\,1\,2\,\ldots,p-1)$. Soit $g\in G$ un p-cycle (question (iv)). Comme deux p-cycles sont conjugués dans S_X , on en déduit qu'il existe $\sigma\in S_X$ tel que $\sigma g\sigma^{-1}=\alpha$. Le conjugué $\sigma G\sigma^{-1}$ a même cardinal que G, contient α , et agit transitivement sur X (si g envoit $\sigma^{-1}(x)$ sur $\sigma^{-1}(y)$, alors $\sigma g\sigma^{-1}$ envoit x sur y).

On suppose désormais $\alpha \in G$. On veut montrer $G = \mathcal{H}_X$. On note $G_\infty \subset G$ le stabilisateur de $\infty \in X$ dans G.

(vi) Monter $|G_{\infty}| = p^2 - p$.

Comme G agit transitivement sur X, la formule orbite stabilisateur montre $|G| = |G_{\infty}||X|$, et $donc |G_{\infty}| = (p^3 - p)/(p + 1) = p^2 - p$.

(vii) Montrer que $P = \langle \alpha \rangle$ est l'unique sous-groupe d'ordre p de G_{∞} , puis que l'on a $P \triangleleft G_{\infty}$.

Comme $|G_{\infty}| = p(p-1)$, les sous-groupes d'ordre p de G_{∞} , comme le sous-groupe P, sont ses p-Sylow. D'après les théorèmes de Sylow, le nombre de p-Sylow de G_{∞} est un diviseur d de p-1 qui vérifie $d \equiv 1 \mod p$. On a donc soit d = 1, soit $d \geq p+1$: absurde. Ainsi, G_{∞} possède un unique p-Sylow, qui comme on le sait est alors distingué (il est égal à ses conjugués).

(viii) En déduire que pour tout $g \in G_{\infty}$, il existe un entier $1 \le a < p$ tel que $g\alpha = \alpha^a g$.

Soit $g \in G_{\infty}$. On a vu que $\langle \alpha \rangle$ est distingué dans G_{∞} . On a donc $g\alpha g^{-1} = \alpha^a$ avec $0 \le a < p$. Mais a = 0 est impossible, sinon on aurait $g\alpha g^{-1} = 1$ puis $\alpha = 1$: absurde.

(ix) Montrer $G_{\infty} \subset \operatorname{Aff}_X$, puis $G_{\infty} = \operatorname{Aff}_X$.

Soit $g \in G_{\infty}$. On a vu qu'il existe un entier $1 \leq a < p$ avec $g\alpha = \alpha^a g$. Cela sécrit aussi g(x+1) = g(x) + a pour tout $x \in \mathbb{Z}/p\mathbb{Z}$. Posons $b = g(0) \in \mathbb{Z}/p\mathbb{Z}$. On a donc g(1) = a + b, g(2) = g(1) + a = 2a + b, et par récurrence immédiate, g(x) = ax + b pour tout $x \in \mathbb{Z}/p\mathbb{Z}$. On a montré $g \in \text{Aff}_X$. L'égalité $G_{\infty} = \text{Aff}_X$ en découle car $|G_{\infty}| = |\text{Aff}_X| = p^2 - p$ (question (vi)).

(x) En déduire que G agit 3-transitivement sur X.

On a $|X| = p + 1 \ge 3$. Il faut montrer que pour tout x, y, z distincts dans X, il existe g dans G tel que $(g(0), g(1), g(\infty)) = (x, y, z)$. Comme G agit transitivement sur X, on peut trouver $h \in G$ avec $h(z) = \infty$. Quitte à remplacer (x, y, z) par (h(x), h(y), h(z)), ce qui est loisible, on peut donc suppser $z = \infty$. Mais alors on conclut par 2-transitivité de $G_{\infty} = \text{Aff}_X \text{ sur } \mathbb{Z}/p\mathbb{Z}$ (question (iii)).

(xi) Montrer que si $g \in G$ fixe 3 points distincts dans X, alors g = 1 (on se ramenera au cas $g \in G_{\infty}$). Soit $g \in G$ fixant 3 points distincts x, y, z de X. On veut montrer g = 1. Quitte à remplacer g par hgh^{-1} avec $h \in G$, qui fixe h(x), h(y), h(z) et qui est trivial si et seulement si g l'est, on peut supposer $(x, y, z) = (0, 1, \infty)$ par ce qu'on vient de démontrer. Mais alors on a $g \in G_{\infty} = \text{Aff}_X$, et donc g(x) = ax + b, puis b = g(0) = 0 (car g fixe 0) et enfin a = g(1) = 1 (car g fixe 1), donc g = 1.

On pose $C = \{g \in G_{\infty} \mid g(0) = 0\}$ et $C' = \{g \in S_X \mid gc = cg \ \forall c \in C\}$ (centralisateur de C dans S_X). On fixe $\gamma \in G$ tel que $\gamma(0) = \infty$, $\gamma(1) = 1$ et $\gamma(\infty) = 0$ (on justifiera l'existence de γ).

(xii) Montrer que C est cyclique d'ordre p-1, et qu'il est engendré par un p-1 cycle.

On a démontré $G_{\infty} = \operatorname{Aff}_X$ (question (ix)). Ainsi, C est l'ensemble des homographies de la forme $m_a(z) = az$ avec $a \in (\mathbb{Z}/p\mathbb{Z})^*$. L'application $a \mapsto m_a, (\mathbb{Z}/p\mathbb{Z})^* \to C$, est manifestement un isomorphisme de groupes. D'après le théorème de Gauss, on en déduit que $C \simeq (\mathbb{Z}/p\mathbb{Z})^*$ est cyclique d'ordre p-1. Soit g un générateur de $(\mathbb{Z}/p\mathbb{Z})^*$. Alors $m_g \in C$ est le p-1-cycle $(1 g g^2, \ldots g^{p-1})$.

(xiii) En déduire que C' est engendré par C et la transposition (0∞) .

Comme C fixe 0 et ∞ , et C est commutatif, on a $C \subset C'$ et $(0 \infty) \in C'$. Supposons réciproquement g est dans C'. Écrivons $C = \langle c \rangle$ avec c un p-1 cycle. Comme g commute à c, il préserve l'ensemble des points fixes de c, qui sont $\{0,\infty\}$. Quitte à multiplier g par (0∞) , on peut donc supposer que g fixe 0 et ∞ . Si $c = (i_1, \ldots, i_{p-1})$ on a aussi $c = gcg^{-1} = (g(i_1), g(i_2), \ldots, g(i_{p-1}))$. Mais quitte à remplacer g par gc^k avec $k \in \mathbb{Z}$, on peut supposer $g(i_1) = i_1$, mais alors on a aussi $g(i_k) = i_k$ pour tout k > 1, puis g = 1.

(xiv) Montrer que si G contient une transposition, ou si $p \leq 3$, on a $G = S_X = \mathcal{H}_X$.

Si G contient une transposition, il contient tout ses conjugués, et donc toutes les transpositions par 2-transitivité de G sur X. On a donc $G = S_X$. On conclut car on a $|G| = |\mathcal{H}_X| = |S_X|$ si, et seulement si, (p-1)p(p+1) = (p+1)!, i.e. $p-2 \le 1$.

On peut donc supposer $(0 \infty) \notin G$ et p > 3.

(xv) Montrer $C' \cap G = C$.

En effet, on a $C \subset C' \cap G$. Réciproquement, comme (0∞) et C commutent, un élément de C' non dans C est de la forme $(0 \infty)c$ avec $c \in C$. Ainsi, si un tel élément est dans G, on a $(0 \infty) \in G$, une contradiction.

(xvi) Montrer que int_{\gamma}: $G \to G$, $g \mapsto \gamma g \gamma^{-1}$, induit un automorphisme d'ordre 2 de C.

Pour $c \in C$ on a c(0) = 0 et $c(\infty) = \infty$, donc $\gamma c \gamma^{-1}$ fixe aussi 0 et ∞ . Ainsi, l'automorphisme int $_{\gamma}$ de G préserve C. Il est non trivial car sinon on aurait $\gamma \in C' \cap G = C$: absurde car γ ne fixe pas ∞ . Enfin, l'élément γ^2 fixe 0 et ∞ , donc est dans C, qui est commutatif, et donc $(\operatorname{int}_{\gamma})^2 = \operatorname{int}_{\gamma^2}$ est l'identité de C.

 $(xvii) \ \textit{Montrer qu'il existe un entier } 1 < n < p-1 \ \textit{avec } n^2 \equiv 1 \ \text{mod } p-1 \ \textit{et } \gamma c \gamma^{-1} = c^n \ \textit{pour tout } c \in C.$

Comme C est cyclique d'ordre p-1, tout automorphisme de C est de la forme $c \mapsto c^n$ avec $n \in (\mathbb{Z}/(p-1)\mathbb{Z})^{\times}$, d'après un théorème du cours. S'il est d'ordre 2, on a $c^{n^2} = c$ pour tout c dans C, et donc $n^2 \equiv 1 \mod p - 1$ en considérant un élément c d'ordre p-1 dans C. De plus, s'il est non trivial on a $n \not\equiv 1 \mod p - 1$.

(xviii) (suite) Montrer $\gamma(x) = x^n$ pour tout $x \in (\mathbb{Z}/p\mathbb{Z})^{\times} \subset X$.

On a $\gamma c = c^n \gamma$. Soit g un générateur de $(\mathbb{Z}/p\mathbb{Z})^*$. Cette identité appliquée à $c = m_g$ s'écrit $\gamma(gx) = g^n \gamma(x)$ pour tout $x \in (\mathbb{Z}/p\mathbb{Z})^{\times}$. On en déduit $\gamma(g^k) = g^{nk} \gamma(1)$ pour tout $k \in \mathbb{Z}$. Mais on a $\gamma(1) = 1$ par hypothèse. On a donc $\gamma(x) = x^n$ pour tout $x \in (\mathbb{Z}/p\mathbb{Z})^{\times}$.

(xix) (suite) En considérant les point fixes de γ dans X, montrer $n+1 \equiv 0 \mod \frac{p-1}{2}$.

Comme $\gamma \neq 1$, on sait que γ a au plus 2 points fixes dans $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Ces points fixes sont nécessairement 1 et -1 (noter p > 2 et donc n impair). On en déduit que le noyau de l'application $\mathbb{Z}/(p-1)\mathbb{Z} \to \mathbb{Z}/(p-1)\mathbb{Z}$, $k \mapsto (n-1)k$ est $\{0, \frac{p-1}{2}\}$. Cela implique que $\frac{n-1}{2}$ et premier avec $\frac{p-1}{2}$. Mais $\frac{p-1}{2}$ divise $\frac{n^2-1}{2} = \frac{n-1}{2}(n+1)$, et on conclut.

(xx) (suite) On suppose enfin $p \equiv 3 \mod 4$. Montrer $n \equiv -1 \mod p - 1$.

On a n impair $car n^2 \equiv 1 \mod p - 1$. Par le(xix), on a soit $n \equiv -1 \mod p - 1$, soit $n \equiv \frac{p-1}{2} - 1 = \frac{p-3}{2} \mod p - 1$. Ce second cas est exclus car n est pair.

(xxi) En déduire que si $p \equiv 3 \mod 4$ on a $G = \mathcal{H}_X$.

On a montré $\gamma(x) = 1/x$. Comme γ et $\mathrm{Aff}_X = G_{\infty}$ sont dans G, on a $\mathcal{H}_X \subset G$ par la question (ii), puis égalité pour des raisons de cardinal.

Partie 2

Dans cette seconde partie, indépendante, nous donnons des applications du résultat principal de la Partie 1 (que l'on pourra donc admettre). On suppose d'abord que G est un groupe d'ordre $p^3 - p$, avec p premier, et que G ne possède pas de sous-groupe distingué H non trivial avec $|H| \mid p^2 - p$. On note X l'ensemble des sous-groupes d'ordre p de G, et on fait agir G sur X par conjugaison.

(i) Soit $d \ge 1$ un diviseur de $p^2 - 1$ avec $d \equiv 1 \mod p$. Montrer d = 1 ou d = p + 1.

On a $p^2 - 1 = dd'$ avec $d, d' \ge 1$ et $d \equiv 1 \mod p$, et donc $d' \equiv -1 \mod p$. On en déduit $d' \ge p - 1$. Si d > 1, on a $d \ge p + 1$ et la seule possibilité est donc d = p + 1 et d' = 1.

(ii) En déduire |X| = p + 1.

Les sous-groupes d'ordre p de G sont ses p-Sylow car on a $|G| = p(p^2 - 1)$. Leur nombre d est un diviseur de $p^2 - 1$ par les théorèmes de Sylow, avec en outre $d \equiv 1 \mod p$. On a donc d = 1 ou d = p + 1 par le (i). Si d = 1, alors l'unique p-Sylow P de G est distingué, et de cardinal $p \mid p^2 - p$: absurde.

(iii) Montrer que l'action de G sur X est transitive et fidèle.

On sait que les p-Sylow de G sont conjugués, donc l'action de G sur X est transitive. Son noyau est un sous-groupe distingué de G inclus dans le stabilisateur d'un point de X, qui est d'ordre $|G|/|X| = p^2 - p$ par transitivité et formule orbite stabilisateur. Cela contredit l'hypothèse sur G par Lagrange.

(iv) On suppose $p \equiv 3 \mod 4$. Montrer que l'on a un isomorphisme $G \simeq \operatorname{PGL}_2(\mathbb{Z}/p\mathbb{Z})$.

Le morphisme $G \to S_X$ associé à l'action étant injectif, G est isomorphe à un sous-groupe de $S_X \simeq S_{p+1}$ agissant transitivement sur X, et d'ordre $p^3 - p$. Il est donc isomorphe à $\operatorname{PGL}_2(\mathbb{Z}/p\mathbb{Z})$ par le théorème de Zassenhaus.

On considère enfin les groupes $H = \mathrm{GL}_3(\mathbb{Z}/2\mathbb{Z})$ et $G = H \rtimes_{\psi} \mathbb{Z}/2\mathbb{Z}$, où $\psi : \mathbb{Z}/2\mathbb{Z} \to \mathrm{Aut}(H)$ est le morphisme envoyant l'élément non trivial de $\mathbb{Z}/2\mathbb{Z}$ sur l'automorphisme $h \mapsto {}^{\mathrm{t}}h^{-1}$ de H (d'ordre 2).

(v) Rappeler pourquoi H est un groupe simple, et montrer |H| = 168.

On sait que $\mathrm{PSL}_3(\mathbb{Z}/2\mathbb{Z})$ est simple par le cours. Mais on a $\mathrm{SL}_3(\mathbb{Z}/2\mathbb{Z}) = \mathrm{GL}_3(\mathbb{Z}/2\mathbb{Z})$ car $(\mathbb{Z}/2\mathbb{Z})^{\times} = \{1\}$, et pour la même raison le centre de ce groupe est trivial, donc on a $G \simeq \mathrm{PSL}_3(\mathbb{Z}/2\mathbb{Z}) \simeq \mathrm{GL}_3(\mathbb{Z}/2\mathbb{Z})$. On sait que son cardinal est $(2^3-1)(2^3-2)(2^3-2^2) = 7 \cdot 6 \cdot 4 = 168$.

(vi) Montrer qu'il n'existe aucun élément $M \in GL_3(\mathbb{Z}/2\mathbb{Z})$ tel que ${}^thMh = M$ pour tout $h \in GL_3(\mathbb{Z}/2\mathbb{Z})$.

(Une preuve parmi d'autres) Un tel $M = (m_{i,j})$ commute à toutes les matrices de permutation $S_3 \subset GL_3(\mathbb{Z}/2\mathbb{Z})$. Comme on a $\sigma(m_{i,j})\sigma^{-1} = (m_{\sigma(i),\sigma(j)})$, et que S_3 est 2-transitif, on en déduit que tous les $m_{i,i}$ sont égaux (à 0 ou 1) et de même que tous les autres coefficients sont égaux (à 0 ou 1). L'inversibilité de M implique alors $M = 1_3$, et donc $^thh = 1_3$ pour tout $h \in GL_3(\mathbb{Z}/2\mathbb{Z})$. C'est faux pour une transvection standard.

(vii) En déduire que G ne possède pas de sous-groupe distingué d'ordre 2.

Soit $N \subset G$ un sous-groupe distingué et d'ordre 2. Alors N n'est pas inclus dans le sous-groupe $H \subset G$, qui est simple. Donc N est engendré par un élément de la forme $g = (M, \overline{1})$ avec $M \in H$. On a nécessairement $hgh^{-1} = g$ pour tout h dans G. Utilisons simplement (h, 0)g = g(h, 0) pour tout h dans H. On trouve $hM = M^{t}h^{-1}$ pour tout h dans H, une contradiction par la question (vi).

(viii) Montrer que les seuls sous-groupes distingués de G sont $\{1\}, G$ et $H \times \{\overline{0}\} \simeq H$.

On rappelle qu'on a une suite exacte naturelle $1 \to H \to G \to \mathbb{Z}/2\mathbb{Z} \to 1$. En particulier, H est distingué (et d'indice 2) dans G. Soit N un sous-groupe distingué quelconque de G. Alors $N \cap H$ est distingué dans H, qui est simple. On a donc $N \cap H = \{1\}$ ou $H \supset N$. Dans le second cas, on a N = G ou N = H car H est d'indice 2. Dans le premier cas la projection $N \to \mathbb{Z}/2\mathbb{Z}$ est injective, donc $|N| \leq 2$, et on conclut par le (vii).

(ix) En déduire $G \simeq \mathrm{PGL}_2(\mathbb{Z}/7\mathbb{Z})$, puis $H \simeq \mathrm{PSL}_2(\mathbb{Z}/7\mathbb{Z})$.

On a $|G|=2.|H|=2.168=336=7^3-7$ avec $7\equiv 3 \mod 4$ premier. De plus, G n'a pas de sous-groupe distingué d'ordre divisant $7^2-7=42$ par le (viii). On a donc $G\simeq \mathrm{PGL}_2(\mathbb{Z}/7\mathbb{Z})$ par le (iv). Le sous-groupe distingué $\mathrm{PSL}_2(\mathbb{Z}/7\mathbb{Z})$ d'indice 2 de $\mathrm{PGL}_2(\mathbb{Z}/7\mathbb{Z})$ est donc isomorphe à un sous-groupe distingué d'indice 2 de G, i.e. à H.