il existe 14 groupes d'ordre 16, 51 d'ordre 32, 267 d'ordre 64,, 49487365422 d'ordre 1024, et on ne connaît pas leur nombre d'ordre 2048.

COROLLAIRE 1.9. Les p-groupes sont résolubles.

DÉMONSTRATION — On montre par récurrence sur $n \ge 0$ qu'un p-groupe P d'ordre p^n est résoluble. C'est clair pour n = 0. Pour n > 0 on sait que le centre Z(P) de P est non trivial. Si on a Z(P) = P alors P est abélien, donc résoluble. Sinon, Z(P) et P/Z(P) sont deux p-groupes d'ordre $< p^n$, résolubles par récurrence, et donc P est résoluble par la Proposition 6.11 Chap. 4.

En fait, les p-groupes vérifient une condition beaucoup plus forte que la résolubilité, appelée nilpotence. Nous renvoyons au Complément 6 pour une discussion de cette notion importante, et aux exercices pour des compléments sur les p-groupes.

2. Les théorèmes de Sylow

Soient G un groupe fini et p un nombre premier divisant |G|. On peut donc écrire $|G| = p^{\alpha}m$ avec $p \wedge m = 1$ et $\alpha \geq 1$. On rappelle qu'un p-Sylow de G est un sous groupe de G de cardinal exactement p^{α} . On a déjà démontré le premier théorème de Sylow (Théorème 4 Chap. 1.14), qui affirme que G possède au moins un p-Sylow. Si P est un p-Sylow de G, il en va de même de chaque conjugué gPg^{-1} pour $g \in G$ (un sous-groupe isomorphe à P via l'automorphisme $x \mapsto gxg^{-1}$). On a en fait les énoncés plus précis suivants.

Théorème 2.1. (Sylow) Soient G un groupe fini et p premier divisant |G|.

- (i) G possède des p-Sylow,
- (ii) Tout p-sous-groupe de G est inclus dans un p-Sylow de G,
- (iii) Deux p-Sylow de G sont conjugués (en particulier, isomorphes).

EXEMPLE 2.2. Le groupe S_4 est d'ordre $24 = 3 \cdot 8$. Les 3-Sylow de S_4 sont donc ses sous-groupes d'ordre 3, nécessairement engendrés par un 3-cycle. Ils sont bien conjugués car les 3-cycles sont conjugués dans S_n pour $n \ge 3$. Les 2-Sylow de S_4 sont ses sous-groupes d'ordre 8. Un exemple est $D_8 \subset S_4$, et tout 2-Sylow est donc conjugué à D_8 par le théorème. Observons cependant que $A := K_4$, $B := \langle (1234) \rangle$ et $C := \langle (13), (24) \rangle$ sont 3 sous-groupes d'ordre 4 de S_4 (en fait, ce sont les 3 sous-groupes d'ordre 4 de S_4), et qu'ils sont deux-à-deux non conjugués dans S_4 ! Ainsi, il n'est pas vrai que deux p-sous groupes de S_4 0 de même ordre sont conjugués, ni même isomorphes (cas de S_4 1 et S_4 2 et S_4 3 et S_4 4 et S_4 5 et S_4 5 et S_4 5 et S_4 6 et S_4 6 et S_4 7 et S_4 8 et S_4 9 et

Ce théorème va découler entièrement du lemme suivant, qui peut-être vu comme une version abstraite de la Proposition 1.4.

LEMME 2.3. (Alignement des p-Sylow) Soient G un groupe fini, H un sousgroupe de G et p premier divisant |H|. Si P est un p-Sylow de G, il existe $g \in G$ tel que $gPg^{-1} \cap H$ est un p-Sylow de H.

^{1.} Un p-sous-groupe d'un groupe G est un sous-groupe de G qui est un p-groupe.

DÉMONSTRATION — On considère la restriction à H de l'action par translations de G sur G/P. Comme |G/P| = |G|/|P| est premier à p, au moins une des orbites $O \subset G/P$ sous l'action de H est de cardinal premièr à p, par l'équation aux classes. Disons que O est l'orbite de gP, pour un certain $g \in G$. Le stabilisateur de gP dans H est $gPg^{-1} \cap H$. Il est d'indice |O| dans H (Formule orbite-stabilisateur), qui est premier à p par hypothèse. C'est aussi un p-sous groupe de H car il est inclus dans le p-groupe gPg^{-1} : c'est un p-Sylow de H.

DÉMONSTRATION — (Du Théorème 2.1). Re-démontrons le (i). On sait que tout groupe fini G est isomorphe à un sous-groupe de S_n . Mais S_n est isomorphe à un sous-groupe de $GL_n(\mathbb{Z}/p\mathbb{Z})$ (matrices de permutations). On peut donc supposer que G est inclus dans $GL_n(\mathbb{Z}/p\mathbb{Z})$. Mais ce dernier possède $P = U_n(\mathbb{Z}/p\mathbb{Z})$ pour p-Sylow. Il existe donc $g \in GL_n(\mathbb{Z}/p\mathbb{Z})$ tel que $gPg^{-1} \cap G$ est un p-Sylow de G.

Le (ii) est une conséquence directe du lemme. En effet, si H est un p-sous groupe de G, et si P est un p-Sylow de G (on sait qu'il en existe par le (i)), il existe $g \in G$ tel que $gPg^{-1} \cap H$ est un p-Sylow de H. Mais comme H est un p-groupe, cela veut dire $gPg^{-1} \cap H = H$, et donc $H \subset gPg^{-1}$. Ainsi, gPg^{-1} est le p-Sylow de G cherché. Dans le cas particulier où H est un p-Sylow, l'inclusion $H \subset gPg^{-1}$ est une égalité pour une raison de cardinal, on a donc $H = gPg^{-1}$: on a montré le (iii).

DÉFINITION 2.4. On notera $\operatorname{Syl}_p(G)$ l'ensemble des p-Sylow de G et $\operatorname{n}_p(G)$ le nombre de p-Sylow de G. Autrement dit, on a $\operatorname{n}_p(G) = |\operatorname{Syl}_p(G)|$.

COROLLAIRE 2.5. On a $n_p(G) = 1 \iff G$ possède un p-Sylow distingué.

DÉMONSTRATION — Si on a $n_p(G) = 1$ alors G possède un unique p-Sylow P, nécessairement distingué car on a alors $gPg^{-1} = P$ pour tout $g \in G$. Réciproquement, si P est un p-Sylow de G, alors tout autre p-Sylow est un conjugué de P par le théorème (iii), et donc égal à P si ce dernier est distingué.

THÉORÈME 2.6. (Sylow) Soit G un groupe fini de cardinal $p^{\alpha}m$ avec $\alpha \geqslant 1$ et $p \wedge m = 1$. On a $n_p(G) \mid m$ et $n_p(G) \equiv 1 \mod p$.

DÉMONSTRATION — Soit $S := \operatorname{Syl}_p(G)$. On a $S \neq \emptyset$ par le Théorème 2.1 (i). Le groupe G agit par conjugaison sur S, $(g,P) \mapsto gPg^{-1}$, transitivement par le (iii) du même théorème. Le stabilisateur de $P \in S$ est son normalisateur $\operatorname{N}_G(P)$ par définitions. Par la formule orbite-stabilisateur on a donc

$$n_p(G) = |S| = |G|/|N_G(P)|, \text{ puis } n_p(G) \mid |G|.$$

Fixons $P \in S$ et considérons son action sur S (donc par $(g,Q) \mapsto gQg^{-1}$). Montrons que son unique point fixe est P lui-même. On aura alors bien $|S| \equiv 1 \mod p$ par la Proposition 1.6. Soit Q un p-Sylow de G qui est fixe, i.e. avec $gQg^{-1} = Q$ pour tout $g \in P$. Autrement dit, on a $P \subset N_G(Q)$ et donc P est un p-Sylow de $N_G(Q)$. Mais Q est manifestement un p-Sylow distingué de $N_G(Q)$, et donc l'unique p-Sylow de ce dernier par le Corollaire 2.5 appliqué à $N_G(Q)$, donc on a P = Q.

EXEMPLE 2.7. Les p-Sylow de S_p sont ses sous-groupes d'ordre p. Chaque tel sous-groupe est engendré par un unique p-cycle de la forme $(1 \ 2 \ \cdots)$. Il y en a donc $(p-2)! \equiv 1 \mod p$ (Wilson), conformément à $n_p(G) \equiv 1 \mod p$, et ils sont bien tous conjugués car les p-cycles le sont dans S_p .

Comme nous le verrons dans les exercices, ce théorème permet typiquement de montrer que G possède un p-Sylow distingué. Donnons une autre application.

EXEMPLE 2.8. Un groupe simple d'ordre 60 est isomorphe à A_5 . En effet, soit G un tel groupe. On a $60 = 12 \cdot 5$, donc $n_5(G) \mid 12$ et $n_5(G) \equiv 1 \mod 5$, puis $n_5(G) = 6$ (1 est interdit car G est simple). Ainsi, l'action naturelle de G par conjugaison sur l'ensemble des six 5-Sylow de G définit un morphisme $f: G \to S_6$ d'image transitive par Sylow. Comme G est simple, ce morphisme est injectif, et pour la même raison on a aussi $\varepsilon \circ f = 1$, donc $f(G) \subset A_6$. La même démonstration que pour S_n montre qu'un sous-groupe d'indice n de A_n est isomorphe à A_{n-1} . On en déduit $G \simeq A_5$ (et que f est l'action exotique!).

Une conséquence technique utile de la conjugaison des *p*-Sylow est le lemme suivant, dont la démonstration est souvent appelée *argument de Frattini*.

LEMME 2.9. (Frattini) Soient G un groupe fini, N un sous-groupe distingué de G, P un p-Sylow de N et $N_G(P)$ le normalisateur de P dans G. On a G = N $N_G(P)$.

DÉMONSTRATION — Soit g dans G. Le p-groupe gPg^{-1} est inclus dans N, car N est distingué dans G. C'est donc encore un p-Sylow de N. Par conjugaison des p-Sylow de N dans N, il existe $n \in N$ tel que $gPg^{-1} = nPn^{-1}$. On en déduit $n^{-1}g \in N_G(P)$, et donc $g \in nN_G(P)$.

3. Le théorème de Schur-Zassenhaus

Théorème 3.1. (Schur-Zassenhaus) Soient G un groupe fini d'ordre mn avec $m \wedge n = 1$ et possédant un sous-groupe distingué d'ordre n. Alors G possède un sous-groupe d'ordre m.

Remarquer que si on a |G|=mn comme ci-dessus, avec $N \lhd G$ d'ordre n et $M \leqslant G$ d'ordre m, alors on a $M \cap N = \{1\}$ par Lagrange, et |G| = |M||N|. Ainsi, M est un complément de N dans G et on a $G = N \rtimes M$ (produit semi-direct interne). Cela démontre que l'intérêt du théorème de Schur-Zassenhaus dans des questions de dévissage.

- EXEMPLE 3.2. (i) Supposons qu'un groupe fini G possède un p-Sylow P distingué. Le théorème de Schur-Zassenhaus implique que P possède un complément K, puis $G \simeq P \rtimes K$ avec |K| premier à p.
- (ii) Soient H un groupe fini et P un p-Sylow de H. Le (i) s'applique à $G = \mathcal{N}_H(P)$ car P est un p-Sylow de G. Ainsi, un p-Sylow admet toujours un complément dans son normalisateur.
- (iii) Soient $H = GL_n(\mathbb{Z}/p\mathbb{Z})$ et $P = U_n(\mathbb{Z}/p\mathbb{Z})$. On peut montrer que le normalisateur de P dans H est le sous-groupe $T_n(\mathbb{Z}/p\mathbb{Z})$ des matrices triangulaires supérieures dans $GL_n(\mathbb{Z}/p\mathbb{Z})$ (Exercice 6.3). On constate que le sous-groupe P admet bien un complément dans G, par exemple le sous-groupe des matrices diagonales, d'ordre $(p-1)^n$, illustrant le (ii).

La démonstration du Théorème 3.1 est assez difficile, et sera découpée en plusieurs étapes. En particulier, il conviendra de traiter à part le cas particulier du théorème dans lequel on suppose en plus que N est abélien, ce que nous ferons au \S 5. Nous allons montrer ici que ce cas abélien entraîne le cas général :

Lemme 3.3. Le cas particulier N abélien du théorème de Schur-Zassenhaus implique le cas général.

DÉMONSTRATION — Soient G un groupe fini d'ordre mn avec $m \wedge n = 1$, et N un sous-groupe distingué de G d'ordre n. On raisonne par récurrence sur |G|. On peut supposer 1 < n, sans quoi M = G convient.

Soient p un diviseur premier de n et P un p-Sylow de N. On pose $G' = N_G(P)$ et $N' = N \cap G'$. On a $N' \lhd G'$ et le Lemme de Frattini s'écrit G = G'N. Le morphisme de groupes $G' \to G/N$, $g \mapsto gN$, est donc surjectif. Son noyau est $N \cap G' = N'$, donc on a un isomorphisme naturel

$$G'/N' \xrightarrow{\sim} G/N$$
.

Ainsi, N' est d'indice m = |G'/N'| = |G/N| dans G', et d'ordre divisant n (car $N' \subset N$). Ainsi, si on a $G' \neq G$, alors par récurrence sur |G| le groupe G' possède un sous-groupe d'ordre m, ainsi donc que G car on a $G' \leq G$.

On peut donc supposer G' = G, *i.e.* P distingué dans N. Soit Z le centre du p-groupe P. On a $Z \neq \{1\}$ par la Proposition 1.6. On a Z caractéristique dans P, et P distingué dans G, donc Z est distingué dans G (Exercice 4 Chap. 4.11 (ii)). On considère alors le groupe quotient G/Z. Son sous-groupe N/Z est d'ordre n/|Z| (noter $Z \subset N$) et d'indice (mn/|Z|)/(n/|Z|) = m. Par récurrence, G/Z possède un sous-groupe d'ordre m, nécessairement de la forme G''/Z avec G'' un sous-groupe de G contenant G. Ainsi, on a |G''| = |G|m avec G abélien distingué dans G'' et |G| = n. Par le cas abélien du théorème de Schur-Zassenhaus, G'' possède un sous-groupe d'ordre G0, ainsi donc que G2. (Noter que l'on peut très bien avoir G2 = G3, auquel cas on ne peut appliquer l'hypothèse de récurrence.)

REMARQUE 3.4. On peut raffiner l'énoncé du théorème de Schur-Zassenhaus : Si N est abélien (voire même résoluble), alors les sous-groupes d'ordre m de G sont conjugués dans G : voir l'Exercice 6.36.

4. Les théorèmes de P. Hall

C'est le théorème suivant : 2

Théorème 4.1. (P. Hall) Soit G un groupe fini résoluble. On suppose |G|=mn avec $m \wedge n = 1$. Alors G possède un sous-groupe d'ordre m.

Un sous-groupe H d'un groupe G tel que |H| et |G|/|H| sont premiers entre eux est appelé sous-groupe de Hall.

^{2.} P. Hall, A note on soluble groups, Journal London Math. Soc. 3 (1928).

REMARQUE 4.2. Le groupe A_5 n'est pas résoluble, et il est d'ordre $60 = 3 \cdot 4 \cdot 5$. Il possède bien des sous-groupes d'ordre 3, 4 et 5 (ses Sylow), ainsi qu'un sous-groupe d'ordre $3 \cdot 4 = 12$ (à savoir A_4). Par contre, il n'a pas de sous-groupe d'ordre 15 ou 20. En effet si H était un tel sous-groupe, l'action par translations de A_5 sur A_5/H (un ensemble à $n \le 4$ éléments) fournirait un morphisme $A_5 \to S_n$ d'image transitive (donc non triviale). Un tel morphisme serait injectif car A_5 est simple : absurde car $|S_n| < 60$ pour n = 3 ou 4.

REMARQUE 4.3. Le groupe A_4 est résoluble d'ordre 12. Il possède des sous-groupes cycliques d'ordre 1, 2, 3, et un sous-groupe d'ordre 4 (à savoir K_4). En revanche, il ne possède pas de sous-groupe d'ordre 6. En fait, A_n n'a jamais de sous-groupe d'indice 2, car il contiendrait le carré (et donc l'inverse) de tout 3 cycle, et donc tous les 3-cycles, alors qu'on a vu que ces derniers engendrent A_n . Cela montre que l'hypothèse $m \wedge n = 1$ est nécessaire, même pour les groupes résolubles.

DÉMONSTRATION — On procède par récurrence sur |G|, et on peut supposer $|G| \neq 1$. Comme G est résoluble, il possède un sous-groupe abélien distingué A non trivial. En effet, si r le plus petit entier ≥ 1 tel que $D^r(G) = 1$, alors $A = D^{r-1}(G)$ convient (il est même caractéristique). Soit p premier divisant |A|. Quitte à remplacer A par son sous-groupe caractéristique

$$A[p] = \{a \in A \mid pa = 0\}$$

(non trivial par Cauchy car p divise |A|), on peut supposer que A est un p-groupe abélien distingué non trivial de G. Il y a deux cas :

Cas (a): p divise m. Dans ce cas, on a |A| divise m. Par récurrence, le groupe (résoluble!) G/A possède donc un sous-groupe d'ordre m/|A|. Il est donc de la forme H/A avec $A \subset H$, et on a donc |H| = |H/A||A| = m, ce que l'on voulait démontrer.

Cas (b): p divise n. Dans ce cas, on a |A| premier à m. Par récurrence, le groupe G/A possède un sous-groupe d'ordre m. Il est donc de la forme H/A avec A inclus dans H, et on a donc |H| = |A|m. Comme A est distingué dans H, on peut appliquer le théorème de Schur-Zassenhaus (dans le cas "abélien"), qui assure alors que H contient un sous-groupe d'ordre m.

P. Hall démontre aussi que, sous les hypothèses du théorème ci-dessus, tous les sous-groupes d'ordre m sont conjugués. De manière tout aussi intéressante, Hall montre aussi une réciproque au théorème ci-dessus :

Théorème 4.4. (P. Hall) Soit G un groupe fini d'ordre d. On suppose que pour toute factorisation d=mn avec $m \wedge n=1$, le groupe G possède un sous-groupe d'ordre m. Alors G est résoluble.

Par exemple, supposons que l'on a $|G| = p^a q^b$ avec p,q premiers distincts. On sait que G a des sous-groupes d'ordre p^a et q^b , d'après Sylow! On doit donc pouvoir en déduire que G est résoluble. C'est effectivement le cas, et c'est un théorème dû à Burnside. Sa démonstration utilise la théorie des caractères, et sera reportée à la toute fin du cours. Ce résultat de Burnside est un ingrédient essentiel dans la démonstration du théorème ci-dessus de Hall, dont nous reportons donc aussi la démonstration à plus tard.